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No.1

1. (10 marks) Use definition to prove that

x
fw) = 2+ 1
is continuous at x = 1.
2. (10 marks) Use definition to prove that
T
o) =
is continuous at x = —1.
3. (10 marks) Use definition to prove that
x
f(LL’) - :CQ + 92
is continuous at x = 1.
4. (10 marks) Use definition to prove that
x

is continuous at x = —1.

No.2

1. (10 marks) Let f:[0,1] — R be uniformly continuous on [0, 1]. Define
g(z) = 2? + f(x) where x € [0,1].

Prove that ¢ is uniformly continuous on [0, 1].

2. (10 marks) Let f:[0,1] — R be uniformly continuous on [0, 1]. Define
g(z) =222 + f(x) where z € [0,1].

Prove that ¢ is uniformly continuous on [0, 1].

3. (10 marks) Let f:]0,1] — R be uniformly continuous on [0, 1]. Define
g(z) = 2% — f(x) where x € [0,1].

Prove that ¢ is uniformly continuous on [0, 1].

4. (10 marks) Let f:]0,1] — R be uniformly continuous on [0, 1]. Define
g(x) =222 — f(z) where z € [0,1].

Prove that ¢ is uniformly continuous on [0, 1].



No.3

1. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2+ 1

Inz+1< forall = >1.

2. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2 +3

Inz+2< for all = > 1.

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

245

Inx+3< for all x> 1.

4. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2+ 7

Inx+4< forall x> 1.

No.4

1. (10 marks) Let f(z) = x + ¢* where z € R.

1.1 (5 marks) Show that f~! is injective (one-to-one) on x € R.

1.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

1.3 (3 marks) Compute (f~1)'(2+1n2).
2. (10 marks) Let f(z) = 2z + ¢ where z € R.

2.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.

2.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

2.3 (3 marks) Compute (f~1)(2+2In2).
3. (10 marks) Let f(z) = x + €2* where z € R.

3.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.

3.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

3.3 (3 marks) Compute (f~!)'(4 +In2).
4. (10 marks) Let f(z) = 2x + ¢** where v € R.

4.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.

4.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

4.3 (3 marks) Compute (f~1)/ (4 +2In2).



No.5

1. (10 marks) Define

Use definition to show that f is integrable on [0, 2]

2. (10 marks) Define

Use definition to show that f is integrable on [0, 3]

3. (10 marks) Define

Use definition to show that f is integrable on [0, 3]

4. (10 marks) Define

Use definition to show that f is integrable on [1, 3]

ifx=0,1,2
if x € (0,2)

ifr=0,1,3
if x € (0,3)

ifr=0,23
if x € (0,3)

ifr=1,2,3
if x € (1,3)



No.6

2
1. (10 marks) Let f(z) = /z where z € [0,1] and P = {‘72 :7=0,1, ,n} be a partition of [0, 1].
n

2
1.1 (4 marks) Let z; = ‘7—2 for each j =0,1,...,n. Find Az; and show that ||P|| — 0 as n — oo.
n

1.2 (6 marks) If the Riemann sum converges to I(f), what is I(f).

2
2. (10 marks) Let f(z) = /x where z € [0,1] and P = {‘74 17 =0,1, ...,n2} be a partition of [0, 1].
n

2
2.1 (4 marks) Let z; = ]—4 for each j = 0,1,...,n% Find Az; and show that ||P| — 0 as n — oo.
n

2.2 (6 marks) If the Riemann sum converges to I(f), what is I(f).

No.7

1. (10 marks) Let g be differentiable and integrable on R. Define

(EQ
f(z) = / g(t) - Vtdt.
1
1
Show that / zg(z) + f(z)dx = 0.
0
1
Hint: Use integration by part to / xf'(z) dw.
0

2. (10 marks) Let g be differentiable and integrable on R. Define

4

fa) = [ a0 Vi

1
Show that / xg(x) + 2z f(x) de = 0.
0

1
Hint: Use integration by part to / 22 f'(z) de.
0



No.8

1. (10 marks) Let 7 be a Pi constant. Show that
<1 2k A
> - (%)
i T T

converges and find its value.
Hint: Use Telescoping Series.

2. (10 marks) Let 7 be a Pi constant. Show that

converges and find its value.
Hint: Use Telescoping Series.



No.9
1. (10 marks) Let {at} and {by} be sequences in R. Prove that
e @] oo o0
if Z ay, converges and Z by, converges absolutely, then Z arby, converges.
k=1 k=1 k=1
Hint: Use Cauchy criterion

2. (10 marks) Let {ax} and {bx} be sequences in R. Prove that

o0 o0 o0
if Z ay, converges absolutely and Z by converges, then Z arby converges.
k=1 k=1 k=1

Hint: Use Cauchy criterion
3. (10 marks) Let {a} and {b;} be sequences in R. Prove that
[e.e] oo o
if Z ay, converges and Z by, converges absolutely, then Z arby, converges absolutely.
k=1 k=1 k=1
Hint: Use Cauchy criterion

4. (10 marks) Let {ax} and {bx} be sequences in R. Prove that
[e.e] oo o
if Z aj, converges absolutely and Z by converges, then Z arby converges absolutely.
k=1 k=1 k=1

Hint: Use Cauchy criterion

No.10

1. (10 marks) Prove that

is conditionally convergent.

2. (10 marks) Prove that

is conditionally convergent.

3. (10 marks) Prove that

e
Il
—

is conditionally convergent.



Solution Final: MAC3309 Mathematical Analysis

No.1

1. (10 marks) Use definition to prove that f(z) = is continuous at z = 1.

22 +1
Proof. Let € > 0. Choose § = min{0.5, 5} such that |z — 1| < ¢. Then |z — 1| < 0.5. So,

—05<z—-1<050r0.5< |z] < 1.5.

1
Thus, W < 2. We obtain
x

S
X

[f(z) = f()] =

1 ‘_’1—3:

T

1
:W.\x—1|<25<2-%:a.
X

Therefore, f is continuous at = = 1.

is continuous at x = —1.

2. (10 marks) Use definition to prove that f(z) = 3;22— .
Proof. Let € > 0. Choose § = v/2¢ such that |z + 1| < 0. Then
|z 4+ 12 < 6% = 2¢.

By the fact that 224+1>1forall ze R, we obtain
1

— <1
x2+1 "
From two reasons, it leads to the below inequality:
T 1 2z + (22 + 1)
/G Y R P T Tl NS oL S e
@) =D = 15 2‘ 2(22 + 1)
2?42z +1| | (z+1)?
2224+ 1) | |2(22+1)
1 1 1
=_. : 1?P<=-1-62== -2 ==¢.
SR I g T

Therefore, f is continuous at z = —1.



3. (10 marks) Use definition to prove that f(z) = is continuous at x = 1.

x

z2 +2

Proof. Let € > 0. Choose 6 = min{1, §} such that [z — 1| < . Then |z — 1| < 1. We obtain
|z] —1 < |z —1] < 1. So, |z|] < 2.

By the fact that 22 + 1 > 1 for all z € R, we obtain

1

—— <1
R
From three reasons, it leads to the below inequality:
x 1 3z — (22 +2)
()] = | 2 T
@) =Wl = |57 3‘ 2(a? +2)
=@ =3z+2)|  |(z-1)(z—2)
2@+ || 2@2+1)
1 1
= =2 |x—1]
2 2241
1 1
<5-1-(\:1:|+2)‘(5:5-1-(2—1—2)-5
€
=20<2 - - =c¢.
5 =€
Therefore, f is continuous at = = 1.
4. (10 marks) Use definition to prove that f(x) = 22_ 5 is continuous at z = —1.
x

Proof. Let € > 0. Choose 6 = min{1, §} such that [z + 1| < . Then |z + 1| < 1. We obtain
|z =1 <|z+1] < 1. So, |z| < 2.
By the fact that 22 +1 > 1 for all 2 € R, we obtain
1

— < 1.
241~
From three reasons, it leads to the below inequality:
x 1 3z + (22 +2)
/G Y R P S Tl IR LI S
@)= (=) x2+2+3‘ 2(22 + 2)
2?43z +2| [+ 1)(z+2)
2022 +1) | | 2(z2+1)
1
- . . 9. 1
2 22+1 2 +2] o+ 1]
1 1
<5-1-(|x!—|—2)'6:5-1-(2+2)-(5

I

DO
S
AN
(]

Therefore, f is continuous at z = —1.



No.2

1. (10 marks) Let f:[0,1] — R be uniformly continuous on [0, 1]. Define
g(z) = 2® + f(x) where z € [0,1].
Prove that ¢ is uniformly continuous on [0, 1].

Proof. Assume that f be uniformly continuous on I.
Let € > 0. There is an 7 > 0 such that

|z —a| < &y for all z,a € [0,1] implies |f(z)— f(a)|] < g
Choose § = min{dl, Z} Let x,a € [0,1] such that |z —a|] < J. Then 0 <z +a <2 and |z — a| < 4.
We obatin

9(2) = 9(a)| = |2* + f(2) — a® — f(a)|
=z —a)(z+a)+ f(z) - f(a)|
< |z —allz + af + [f(2) = f(a)]

9 g
Q- < 24— =
<9 4—2<4 +2 5

Thus, ¢ is uniformly continuous on [0, 1].
2. (10 marks) Let f:[0,1] — R be uniformly continuous on [0, 1]. Define
g(x) =222 + f(xr) where z € [0,1].
Prove that ¢ is uniformly continuous on [0, 1].

Proof. Assume that f be uniformly continuous on I.
Let € > 0. There is an 67 > 0 such that

|z —a| < d; for all z,a € [0,1] implies |f(z) — f(a)| < %
Choose § = min {61, %} Let z,a € [0,1] such that |z —a] < d. Then 0 <z +a <2 and |z —a| < d;.
We obatin

l9(z) = g(a)| = |22% + f(2) — 2a* — f(a)|
=[2(z —a)(z + a) + f(z) — f(a)|
<2z —allz + af + [f(z) — f(a)]
9

£ e
262+ - <—-d4-=
< +5<gitg=¢

Thus, ¢ is uniformly continuous on [0, 1].



3. (10 marks) Let f:][0,1] — R be uniformly continuous on [0, 1]. Define

g(z) = 2% — f(x) where x € [0,1].
Prove that g is uniformly continuous on [0, 1].

Proof. Assume that f be uniformly continuous on 1.
Let € > 0. There is an §; > 0 such that

|x—ﬂ<5ﬁmaﬂna€mj]im@ﬂ;|ﬂ@—f@ﬂ<%.

Choose § = min {61, i} Let x,a € [0,1] such that |xr —a| < J. Then 0 <z +a <2 and |z —a| < d;.
We obatin

9(2) = g(a)| = |2* — f(z) — a® + f(a)|
=@ —a)(z +a) = (f(z) = f(a))]

< Ix—a|!93+a|+|f( ) — f(a)]

€
0-2 S W
< +2<4 +2

Thus, g is uniformly continuous on [0, 1].

. (10 marks) Let f:[0,1] — R be uniformly continuous on [0, 1]. Define
g(z) =222 — f(x) where z € [0,1].

Prove that ¢ is uniformly continuous on [0, 1].

Proof. Assume that f be uniformly continuous on I.
Let € > 0. There is an 47 > 0 such that

|x —a| < 61 for all x,a € [0,1] implies |f(z)— f(a)] < %

Choose § = min{dl, %} Let x,a € [0,1] such that |x —a|] < J. Then 0 <z +a <2 and |z —a| < 4.
We obatin

l9(z) — g(a)| = |22 — f(z) — 2a* + f(a)|
= [2(z — a)(z + a) = (f(2) — f(a))]
<2z —allz +af + [f(2) — f(a)]

e e e
2524 - <= -d4-=
< +5 <5t

Thus, g is uniformly continuous on [0, 1].



No.3

1. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2
1
lnx—i—lgx +

forall x> 1.

Proof. Let a > 1 and define

241

flz)=lnzx+1-— where z € [1,a).

Then f is continuous on [1,a] and differentiable on (1,a). It follows that

f(1)=0
1
f@)=1-a
By the Mean Value Theorem, there is a ¢ € (1,a) such that

fla) = f(1) = f(c)(a—1)

Ina+ H (i )a—l (1_662)(a—1)

From 1 < ¢, it leads to 1 — ¢ < 0. So,

1—¢?
c

< 0.

Since a > 1, a — 1 > 0. Therefore,

2 1 1_2
1na+1—“2+ :( C)(a—1)<0
C

2+ 1

Therefore, We conclude that Inz +1 <

for all = >1.

2. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2
3
lnx—|—2§x +

for all = >1.

Proof. Let a > 1 and define

2
f(x):lna:+2—$ 3

where z € [1,qa).

Then f is continuous on [1,a] and differentiable on (1,a). It follows that

f)=0
flay=——a

By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla)—f(1) = f(e)a—1)
243 1 1—¢?
lna+2—a;— (—C)(a—l):( C>(a—1)

C C

From 1 < ¢, it leads to 1 — ¢ < 0. So,
1—¢c?

c

< 0.

Since a > 1, a — 1 > 0. Therefore,

Ina+2—

a2—|—3_ 1— 2
5 =

z2 +3

)(a—1)<0

Cc

Therefore, We conclude that Inx + 2 < for all = > 1.



3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2
5
Inz+3< T

forall = >1.

Proof. Let a > 1 and define

2
)
f(ac)zlnx—i—i%—w +

where z € [1,a.

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f1)=0
fla)=——a

By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla) = f(1) = f'(c)(a—1)
2 1 1— 2
lna+3—a;5:<—c>(a—1):< c)(a—l)

C C

From 1 < ¢, it leads to 1 — ¢ < 0. So,
1—¢?

C

< 0.

Since a > 1, a — 1 > 0. Therefore,

Ina+3— =

2

a’+5 1—¢2
c

>(a—1)<0

2
5
Therefore, We conclude that Inz + 3 < Tt

for all = > 1.

4. (10 marks) Use the Mean Value Theorem (MVT) to prove that

2+ 7

Inz+4< forall = >1.

Proof. Let a > 1 and define

247

f(z)=lnzx+4— where z € [1,al.

Then f is continuous on [1,a| and differentiable on (1,a). It follows that

f1)=0
fla)=——a

By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla) = f(1) = fi(c)(a—1)
2 2
na+4—"2 ;7 = <1—c> (a—1)= (1 i >(a—1)

(& C

From 1 < ¢, it leads to 1 — ¢ < 0. So,
1—¢?

C

< 0.

Since a > 1, a — 1 > 0. Therefore,

2 7 1_2
1ma+4—a;r :< C)(a—1)<0
C

2+ 7

Therefore, We conclude that Inxz +4 < forall = >1.




No.4
1. (10 marks) Let f(z) = z + e* where z € R.
1.1 (5 marks) Show that f~! is injective (one-to-one) on z € R.
Proof. Let z,y € R and z # y. WLOG x > y. Then x —y > 0 and e® > e¥. We obtain
eV —e"<0<ax—y

y+e¥ <x+e’

fly) < flx)
So, f(x) # f(y). Therefore, f is injective in R. O

1.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f—1
differentiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.

1.3 (3 marks) Compute (f~1)'(2+1n2).

Solution. We see that f’(z) =1+ e” and f(In2) =In2+2. So f~1(2+In2) =In2. By IFT,
1 1 1 1
—1y/ _ _ _ _
(F) 2+ In2) = f'(f~1(2+1mn2)  f(In2) 1+2 3 #

2. (10 marks) Let f(z) = 2z + ¢ where z € R.

2.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.
Proof. Let z,y € R and x # y. WLOG x > y. Then 2(z —y) > 0 and e” > e¥. We obtain

e/ —e" <0<2z—-y)
2y +e¥ <2x+e”
fly) < f(z)

So, f(x) # f(y). Therefore, f is injective in R. O

2.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f—! differentiable on R.
2.3 (3 marks) Compute (f~!)'(2+2In2).
Solution. We see that f’(z) =2+ e* and f(In2) =2In2+2. So f~}(2+2In2) = In2. By IFT,
1 1 1 1

(fF'(@2+2mn2) = 2 2ma)  fny) 242 4 i




3. (10 marks) Let f(z) = = + €** where 2 € R.

3.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.
Proof. Let x,y € R and x # y. WLOG 2 > 5. Then  —y > 0 and 2z > 2y. So, e?* > ¢%¥. We obtain

e —_e <0<z —y
y+€2y<x_’_€2m
fly) < f(=)

So, f(x) # f(y). Therefore, f is injective in R. O

3.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.
3.3 (3 marks) Compute (f~!)'(4 +In2).
Solution. We see that f/(z) = 1+ ¢ and f(In2) =In2+4. So f~1(4+1n2) = In2. By IFT,
1 1 1 1

(f7)(4+m2) = F(fL4+n2) f(n2) 1+4 5 #

4. (10 marks) Let f(z) = 27 + ¢** where v € R.

4.1 (5 marks) Show that f~! is injective (one-to-one) on = € R.
Proof. Let z,y € R and z # y. WLOG z > y. Then 2(x — y) > 0 and €2* > €Y. We obtain

e — ¥ <0< 2z —vy)
2y + ¥ < 2z + e*®
fly) < f(z)

So, f(x) # f(y). Therefore, f is injective in R. O

4.2 (2 marks) Use the result from 1.1 and the Inverse Function Theorem (IFT) to explain that f differ-
entiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.
4.3 (3 marks) Compute (f~1) (4 +2In2).
Solution. We see that f’(z) =2+ 2¢” and f(In2) =2In2+4. So f (4 +2In2) = In2. By IFT,
1 1 1 1

U@+ 22) = G o = Py — 2514~ 6 7




No.5

1. (10 marks) Define

0 ifz=0,1,2
fz) = :
1 ifze(0,2)

Use definition to show that f is integrable on [0, 2]
Solution. A graph of the function is

)

Proof. Let ¢ > 0 and k,n € N with 1 < k < n. Choose P = {xg,x1, T2, ..., T, ..., T, } Where 9 = 0,25 = 1
and z, =2 by ||P|| = max{Az; : i =1,2,...,n} < 5. We obtain

) 0 if j=1,kk+1n
m; =
! 1 if j=23,..k—1,k+2,...,n—1

M;(f)=1 ifj=1,2,...,n

It follows that

n

L(P, f) =Y mi(f)(x; —xj-1)

j=1
k—1 n—1
=0+ > mi(f)(wj—2—1) +0+0+ > my(f)(a; —zj-1) +0
j=2 j=k+2
k—1 n—1
= Umj—zi)+ Yy, Uzj—xj)

j=2 j=k+2

J
= (-1 — 20) + (Tn-1 — Tp11)

n n

UP.f) =Y M(f)(zj —zj1) =Y Lz — 3j-1) = 20 — 20
7j=1

Then

U(P, f) = L(P, f) = (xn — z0) = [(Zx—1 — Z0) + (Tn—1 — Tp11)]
= (Tn — Tp-1) + (Tht1 — T—1)
= (Tn — Tp—1) + (Tr+1 — T) + (T — Tp-1)
= Azp + Az + Az < 3[|P|| < e

Hence, f is integrable on [0, 2]. O



. (10 marks) Define

0 ifz=01,3
1 ifxe(0,3)

Use definition to show that f is integrable on [0, 3]
Solution. A graph of the function is

o

Proof. Let e > 0 and k,n € N with 1 < k < n. Choose P = {z9,x1,%2, ..., Tk, ..., Tp,} Where 29 =0,z =1
and z, = 3 by ||P|| = max{Az; :i=1,2,...,n} < 5. We obtain

) 0 if j=1kk+1,n
m; =
’ 1 if j=23,.k—1k+2...n—1

M;(f)=1 ifj=1,2,...n

It follows that

n

L(P, f) = m(f)(xj —xj-1)

j=1
k-1 n—1
=0+ Zm](f)(mj —xj—1)+0+0+ Z m;(f)(x; —xj—1) +0
=2 j=k+2
k-1 n—1
=) Uaj—zm)+ Y Uay—ajm1)

=2 j=k+2

J
= (¥k—1 — 20) + (Tp-1 — Tpy1)

n

UP, f)=> Mj(f)(z; —xj1) = Y _1(xj — 3j-1) = 2 — 20
j=1

j=1

Then

U(P, f) = L(P, f) = (¥ — 20) — [(Th—1 — T0) + (Tn—1 — Tp41)]
= (Tn — Tn-1) + (Th41 — Tp—1)
= (xp — Tn-1) + (Thg1 — k) + (T — T—1)

Az, + Akarl + Axp < 3HPH <€

Hence, f is integrable on [0, 3]. O



. (10 marks) Define

0 ifz=023
flz) = .
1 ifxe(0,3)

Use definition to show that f is integrable on [0, 3]
Solution. A graph of the function is

o
—

Proof. Let e > 0 and k,n € N with 1 < k < n. Choose P = {xg, 21,22, ..., Tk, -..., Tp,} Where xg =0,z = 2
and z, = 3 by ||P|| = max{Az; :i=1,2,...,n} < 5. We obtain

) 0 if j=1kk+1,n
m; =
’ 1 if j=23,.k—1k+2...n—1

M;(f)=1 ifj=1,2,...n

It follows that

n

L(P, f) = m(f)(xj —xj-1)

j=1
k-1 n—1
=0+ Zm](f)(mj —xj—1)+0+0+ Z m;(f)(x; —xj—1) +0
=2 j=k+2
k-1 n—1
=) Uaj—zm)+ Y Uay—ajm1)

=2 j=k+2

J
= (¥k—1 — 20) + (Tp-1 — Tpy1)

n

UP, f)=> Mj(f)(z; —xj1) = Y _1(xj — 3j-1) = 2 — 20
j=1

j=1

Then

U(P, f) = L(P, f) = (¥ — 20) — [(Th—1 — T0) + (Tn—1 — Tp41)]
Tn — Tp-1) + (Tp1 — Tp—1)
Tp — Tp-1) + (Tpp1 — ) + (Tp — T—1)

Az, + Akarl + Axp < 3HPH <€

=
=
=

Hence, f is integrable on [0, 3]. O



4. (10 marks) Define

0 ifz=1,23
flz) = .
1 ifzxe(1,3)

Use definition to show that f is integrable on [1, 3]
Solution. A graph of the function is

Proof. Let e > 0 and k,n € N with 1 < k < n. Choose P = {xg, 21,22, ..., Tk, ..., Tp,} Where g = 1,2, = 2
and z, = 3 by ||P|| = max{Az; :i=1,2,...,n} < 5. We obtain

) 0 if j=1kk+1,n
m; =
’ 1 if j=23,.k—1k+2...n—1

M;(f)=1 ifj=1,2,...n

It follows that

n

L(P, f) = m(f)(xj —xj-1)

j=1
k-1 n—1
=0+ Zm](f)(mj —xj—1)+0+0+ Z m;(f)(x; —xj—1) +0
=2 j=k+2
k-1 n—1
=) Uaj—zm)+ Y Uay—ajm1)

=2 j=k+2

J
= (¥k—1 — 20) + (Tp-1 — Tpy1)

n

UP, f)=> Mj(f)(z; —xj1) = Y _1(xj — 3j-1) = 2 — 20
j=1

j=1

Then

U(P, f) = L(P, f) = (¥ — 20) — [(Th—1 — T0) + (Tn—1 — Tp41)]
Tn — Tp-1) + (Tp1 — Tp—1)
Tp — Tp-1) + (Tpp1 — ) + (Tp — T—1)

Az, + Akarl + Axp < 3HPH <€

=
=
=

Hence, f is integrable on [1, 3]. O



No.6
j2
1. (10 marks) Let f(z) = /z where z € [0,1] and P = {2 :7=0,1, ,n} be a partition of [0, 1].
n
j2
1.1 (4 marks) Let z; = = for each j =0, 1,...,n. Find Az; and show that ||P|| — 0 as n — oo.
n

Solution. We obtain

-1 25 -1

We consider

2

1 3 5 2n—11 2n-1
= max ﬁ,ﬁ,ﬁ,..., n2 = n2 .

27 —1
|P|| = max{Az;:j=1,2,..,n} = max{ J 1j=1,2, ,n}
n

Thus,
= 0.

2n—1
lim [|P[| = lim ——
n—oo n—oo n

1.2 (6 marks) If the Riemann sum converges to I(f), what is I(f).
Solution. Choose f(t;) = f(fl—Z) on the subinterval [z;_1,2;]. We obtain

> san =35 (L) 2 < S50 ey
=1

j=1 j=1

1 i 1l =~ .
ZEZE'@]_U:@Z(%?_])
i=1

1 - .
= (2> =i
j=1 j=1

1[2nm+U@n+D_nm+U}

n3 6 2
(n+1)2n+1) n+1
N 3n?2 2n?2
Thus,
lim (n+1)2n+1) n+1 2 2
1 JA - e
|P1||1§02 ft)Az; = Jim, 3n2 2n? 3 5 ¥



2
2. (10 marks) Let f(z) = /= where z € [0,1] and P = {‘74 17 =0,1, ...,n2} be a partition of [0, 1].
n
j2
2.1 (4 marks) Let x; = = for each j = 0,1,...,n*. Find Az; and show that ||P|| — 0 as n — oo.
n

Solution. We obtain

(-1 _2j—1

3 v for all j =1,2,3,...,n%

j2
ij:xj—xj_lzj—
n
We consider

27 —1
HP||:maX{A:L‘j:j:1,2,...,n2}:max{ J 7 :j:1,2,...,n2}
n

{1 3 5 2n2—1} m2—1
=IMaX § —5, 7y - = .

nt’ nt’nd’ n n4
Thus,
, Com?—1
lim ||P| = lim — =0.
n—00 n—00 n

2.2 (6 marks) If the Riemann sum converges to I(f), what is I(f).

Solution. Choose f(t;) = f(i) on the subinterval [z;_1,x;]. We obtain

n4

1 n2 j ,n2
S e L

1 TL2 TL2
=5 222072
j=1 j=1

20,2 2 2(,2
1 [2n(n +1)(2n°+1) n(n —i—l)]

E 6 2
P+ +1) P41
B 3n4 2n4
Thus,
n
— P D@E@et ) P4l 2 2
1= Jim, D 7it)Aa; = lim, 30t Tt 3 VT3 F

j=1



No.7

1. (10 marks) Let g be differentiable and integrable on R. Define

2

f(x) = /1 "ot Vidt.

Show that /01 zg(z) + f(z)dx = 0.

Hint: Use integration by part to /1 xf'(z)dx

Solution. By the First Fundamen‘é)al Theorem of Calculus and Chain rule,
f(@) = g(a?) - Va? - 20 = g(a?) - 2a]al.

By integration by part, we obtain

1 1
/0 £ () do = [z f(x)]} / (2 f() dx

1
- a?) - 2alal o = 1 /f
/0129@3 ()da:—/ g(t) - Vtdt — /f
/0 cg(x?) - (2z)dr =0 — /f dx
/1562 g(x?) - (2*)' dz =0 — /f dx Change of Variable ¢(z) = 2*
/¢ ’(az)da::()—/o (@) da

/(b(o) t-g(t)dt+/o (@) do =
1



2. (10 marks) Let g be differentiable and integrable on R. Define

4

fa) = [ a0 Vi

1
Show that / zg(z) + 2z f(z) dz = 0.
0
1
Hint: Use integration by part to / 22 f'(z) d.
0
Solution. By the First Fundamental Theorem of Calculus and Chain rule,
f(z) = gla*) - Vat - 42 = g(a*) - 42°.
By integration by part, we obtain
1 1
| @ =ran - [ @ d
1 1
/ 22 g(z?) 42’ dx = f(1) - / 2z f(z)dx
0 0
1 1 1
/ 427 - g(a*) dx = / g(t) - Vtdt —/ 2z f(z) dx
0 1 0
1 1
/ ztg(2?) - (423) de =0 — / 2z f(z) dx
0 0

1 1
/ atg(@h) - (2 de=0— / 22 f () dx Change of Variable ¢(z) = z*
0 0

1 1
/ o) - g(d(x)) - &/ (z) da = 0 / 20 f(z) da
0 0



No.8

1. (10 marks) Let 7 be a Pi constant. Show that

>

k=1

1

2
7T

|

converges and find its value.
Hint: Use Telescoping Series.

Solution. We rewrite the term of this series

-7

7T2k

1——+
™

1

2
k

™

1- —+

k
1
- k> k2 —2k+1

g

7.[.2k

s

2
xk

k

)

1 1

+ .
7k?

1
k2

1
pk=1)2

1

)+ (

s

Then, the first term is telescoping series and the second term is geometric series. Thus,

00 k 00 00 k
1 w2k [k 1 1 1
2w [1 (D) 22 () X (5)
k=1 k=1 k=1
[e'e) 00 k
1 1 ) < 1 )
¥ ()2
k—1)2 2
k=1 <7T( oo k=1 \T
1
=—1+ lim — T
+ kggo k? + 1-— %
1 2—7
= 1404+ — = -
™ — Tm—1
2. (10 marks) Let m be a Pi constant. Show that
=1 AN
> w1
k=1
converges and find its value.
Hint: Use Telescoping Series.
Solution. We rewrite the term of this series
A T I SR U 11 1
a2 |7\ w ) | R gk qd T gk pRdktd T gk p(h2)?
(1 1 1 1
T\ gk p(k-1)2 + ak=1)2  (k-2)2

Then, the two terms are telescoping series. Thus,

> 1 ﬂ-k 4 oo 1 1 ) .
; k2 [ <7T> ] ; |:<7rk2 7T(k_1)2> <7T(k_1)2 7r(k_2)2>:|
S 1 1 ) = < 1 1
:_Z ak=1)2  pk? _Z k—2)2 k—1)2
k=1 (77'( ) ™ k=1 7T( ) 7'['( )
=—14 lim — l+ lim ——
o e TR
1 T+ 1

—140-—+0=—
T

#

)



No.9

1. (10 marks) Let {at} and {by} be sequences in R. Prove that

e @] oo o0
if Z ay, converges and Z by, converges absolutely, then Z arby, converges.
k=1 k=1 k=1

Hint: Use Cauchy criterion

e.9] oo

Proof. Assume that Zak converges and Z by, converges absolutely. Then {aj} converges (to zero). So,
k=1 k=1

{ar} is bounded, i.e., there is an M > 0 such that

lag| < M for all k € N.

o0 o
Let € > 0. Since Z by, converges absolutely, Z |b| converges. By Cauchy criterion, there is an N € N such

k=1 k=1
that

3

m
m >n >N implies Z]bk\<M

k=n

1
Let m,n € N such that m >n > N. If n < k <m, then z < 1. We obatin

D larbil = lagl[bg] <Y M|by|
k=n k=n k=n

67

M E.

:Mi’bk‘<M'

k=n

o0 o0
Thus, Z |akb| converges. This result concluded that Z arby converges.
k=1 k=1



2. (10 marks) Let {ax} and {bx} be sequences in R. Prove that
(o.9] o o
if Z ax converges absolutely and Z by converges, then Z arby converges.
k=1 k=1 k=1
Hint: Use Cauchy criterion
oo o0
Proof. Assume that Zak converges absolutely and Zbk converges. Then {b;} converges (to zero). So,
k=1 k=1
{bx} is bounded, i.e., there is an M > 0 such that

lbi| < M for all k € N.

[ee] oo
Let € > 0. Since Zak converges absolutely, Z |ak| converges. By Cauchy criterion, there is an N € N
k=1 k=1
such that
- €
m >n >N implies ag| < —.
> p kz: Wl <97
=n

< 1. We obatin

| =

Let m,n € N such that m >n > N. If n < k < m, then

m m m
D larbi] =Y laxllbg] <> Mlay]
k=n k=n k=n

m
€
:Mkzak<M-M:e.
=n

o [e.@]
Thus, Z |axby| converges. This result concluded that Z arby, converges.
k=1 k=1



3. (10 marks) Let {ax} and {b;} be sequences in R. Prove that

oo oo o0
if Z ax converges and Z by, converges absolutely, then Z arby converges absolutely.
k=1 k=1 k=1

Hint: Use Cauchy criterion

oo oo
Proof. Assume that Z ay converges and Z by, converges absolutely. Then {ax} converges (to zero). So,
k=1 k=1

{ax} is bounded, i.e., there is an M > 0 such that

lar| < M for all k € N.

o0 o

Let € > 0. Since Z by, converges absolutely, Z |bk| converges. By Cauchy criterion, there is an N € N such
k=1 k=1

that

€

m
m >n > N implies Z|bk|<M

k=n

1
Let m,n € N such that m >n > N. If n < k <m, then — < 1. We obatin

k
m m m
> larbrl =D laxllbe] < M]bl
k=n k=n k=n
- €
=n

o oo
Thus, Z |axby| converges. On other word, we said that Z arby, converges absolutely.
k=1 k=1



4. (10 marks) Let {ax} and {b;} be sequences in R. Prove that
o [e.9] e, 9]
if Z ap converges absolutely and Z by converges, then Z arby converges absolutely.
k=1 k=1 k=1
Hint: Use Cauchy criterion
oo o0
Proof. Assume that Zak converges absolutely and Zbk converges. Then {b;} converges (to zero). So,
k=1 k=1
{bx} is bounded, i.e., there is an M > 0 such that

lbi| < M for all k € N.

[ee] oo
Let € > 0. Since Zak converges absolutely, Z |ak| converges. By Cauchy criterion, there is an N € N
k=1 k=1
such that
- €
m >n >N implies ag| < —.
> p kz: Wl <97
=n

< 1. We obatin

| =

Let m,n € N such that m >n > N. If n < k < m, then

m m m
D larbi] =Y laxllbg] <> Mlay]
k=n k=n k=n

m
€
:Mkzak<M-M:e.
=n

o o
Thus, Z |axby| converges. On other word, we said that Z arby converges.
k=1 k=1



No.10

1. (10 marks) Prove that

i(—l)k arcsin (;)

k=1

is conditionally convergent.

Solution. Firstly, we see that
lim arcsin (1> = 0.
k—o0 k
1
Next, let f(x) = arcsin () where x > 1. The derivative of f(z) is
x
1 1 1
f(z) = ——" <—2> =——F—=<0 foralz>1
1- 4 t a2\ /1 — %

1
So, {arcsin (k:) } is decreasing. By Alternating Series Test (AST),

2

- 1
Z(— 1)* arcsin <k> converges.

k=1

1 - 1
(—=1)* arcsin (k) ’ = Zarcsin <k>
k=1

Finally, we consider
oo

k=1

and

-1
. arcsin (¢ . 1-= . 1
lim 1(k)zhm T = lim ——=1>0
k—o0 % k—o0 2 k—o0 1—

oo
1
Since Z z diverges, by the Limit Comparision Test, it implies that
k=1

oo
(1 .
Z arcsin (k:) diverges.
k=1
Therefore, we conclude that

o
1
Z(—l)k arcsin <k:> is conditionally convergent.
k=1



2. (10 marks) Prove that

is conditionally convergent.
Solution. Firstly, we see that
1
lim sin | - | =

1
Next, let f(x) = sin () where x > 1. By that fact that
x

0<-<1< g for all k € N, we obtain cos (l) > 0.

x

=

The derivative of f(x) is

f'(x) = cos <1> : < 1> <0 forallz>1.

x x2

1
So, {sin <l{:) } is decreasing. By Alternating Series Test (AST),

- 1
Z(—l)k sin </<:> converges.

k=1

ran(D)-Eo(l

Finally, we consider

and

(e e}
1
Since Z T diverges, by the Limit Comparision Test, it implies that
k=1

= 1

Z sin <k> diverges.
k=1

Therefore, we conclude that

oo
1
Z(—l)k sin (k) is conditionally convergent.
k=1



3. (10 marks) Prove that
> 1
—1Fkt Z
> (-1tan (1)
k=1
is conditionally convergent.

Solution. Firstly, we see that
1
lim tan <> = 0.
k—o0 k

1
Next, let f(x) = tan <> where x > 1. The derivative of f(x) is
T

f'(x) = sec? <1) : (—1> <0 forallz>1.

Finally, we consider

(o] o0 1
Z (—1)* tan <k> ’ = Zsin <>
k=1 k=1
and
1 2 (1 1
lim tanl(k) = lim >ee (k) 1( k ) = lim sec? <> =1>0
k—oo % k—oo -2 —00

[ee]
1
Since Z T diverges, by the Limit Comparision Test, it implies that
k=1

o0
1 .
Z tan (k) diverges.
k=1
Therefore, we conclude that

o
Z(—l)k tan () is conditionally convergent.



