

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Midterm Examination, Semester 2/2019

ID Subject	Course Name	Test Time	Full Scores
MAP2406	Mathematical	5pm - 8pm	105 points
	Analysis	Thur 5 Mar 2020	30%
Name		ID	Section

Direction

- 1. 10 questions and one Extra of all 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Don't take text books and others come to the test room.
- 4. Cannot answer sheets out of test room.
- 5. Deliver to the staff if you make a mistake in the test room.

Your signate	ure

Lecturer: Assistant Professor Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Extra
Scores											

Total	

ID	Section
ID	Section

1. (10 points) Let a and b be a non-negative real numbers. Prove that

$$\sqrt{ab} \le a + b.$$

ID	Section

2. (10 points) Let x and y be real numbers. Prove that

$$|x+y|=|x|+|y|$$
 if and only if $xy \ge 0$.

3. (10 points) Define the set

$$A = \left\{ \frac{n^2}{n^2 + 1} : n \in \mathbb{N} \right\}.$$

Find $\sup A$ and $\inf A$ with proving them.

4. (10 points) Use Definition to prove that

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1.$$

5. (10 points) Assume that $x_n \to -2$ as $n \to \infty$. Show that

$$\frac{1}{1+(x_n)^2} \to \frac{1}{5}$$
 as $n \to \infty$.

ID	Section
112	

6. (10 points) Let $\{x_n\}$ be a sequence in \mathbb{R} . Prove that

 $\{x_n\}$ is a Caucy sequence — if and oly if — $\{x_n\}$ is a convergent sequence.

ID	Section
ID	Section

7. (10 points) Let A be a nonempty subset of \mathbb{R} . Assume that A is open. Prove that $\inf A \notin A$ and $\sup A \notin A$.

8. (10 points) Use definition to prove that

$$\lim_{x \to -1} \frac{x}{x+2} = -1.$$

9. (10 points) Use definition to prove that

$$\lim_{x\to 2^-}\frac{1}{\sqrt{2-x}}=+\infty.$$

10. (10 points) Let f and g be real functions from a set E to \mathbb{R} . Assume that

$$f(x) \le g(x)$$
 for all $x \in E$.

Let a is a limit point of E. Prove that if $f(x) \to \infty$ as $x \to a$, then

$$g(x) \to \infty \text{ as } x \to a.$$

ID	Section
	50001011

Extra (5 points) Let X' represent the set of all limit points of X. Let A and B be two subset of \mathbb{R} . Show that

$$(A \cup B)' = A' \cup B'.$$