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1. (10 marks) Use definition to prove that

f(x) = x3 + 1

is continuous at x = 1.

2. (10 marks) Let f : [0, 1] → R be uniformly continuous on [0, 1]. Assume that

f + g is uniformly continuous on [0, 1].

Prove that g is uniformly continuous on [0, 1].
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that
√
x ≤ x for all x ≥ 1.
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4. (10 marks) Let f(x) = ex − e−x where x ∈ R.

4.1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.
4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that

f−1 differentiable on R.
4.3 (3 marks) Compute (f−1)′(3

2
).
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5. (10 marks) Define

f(x) =

{
1 if x = 1

2 if x ∈ (0, 1) ∪ (1, 2)

Use definition to show that f is integrable on [0, 2]
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6. (10 marks) Let f(x) = 2x+ 1 where x ∈ [0, 1] and

P =

{
2j + 1

2n+ 1
: j = 0, 1, ..., n

}
=

{
1

2n+ 1
,

3

2n+ 1
,

5

2n+ 1
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f).
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ x2

1

g(t)√
t
dt where x > 0.

Show that
∫ 1

0

f(x) + g(x) dx = 0.

Hint: Use integration by part to
∫ 1

0

f(x) dx.
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8. (10 marks) Evaluate the infinite sum :
∞∑
k=1

1

2023k

[
2022− 1

2023k−1
+

1

2023k+1

]
.

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let {ak} and {bk} be sequences in R. Prove that

if
∞∑
k=1

ak and
∞∑
k=1

bk converges absolutely, then
∞∑
k=1

(ak + bk) converges absolutely.

Hint: Use Cauchy criterion

page 9 of 10

9



ID......................................... Section....................

10. (10 marks) Prove that
∞∑
k=1

(−1)k ln
(
1 +

1

k

)
is conditionally convergent.
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Solution Final Exam. 2/2022
MAC3309 Mathematical Analysis

1. (10 marks) Use definition to prove that

f(x) = x3 + 1

is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{1, ε
7
} such that |x− 1| < δ. Then |x− 1| < 1. So,

|x| − 1 ≤ |x− 1| < 1.

Thus, |x| < 2 and |x2| < 4. We obtain

|f(x)− f(1)| = |(x3 + 1)− 2| = |x3 − 1|
= |(x− 1)(x2 + x+ 1)| = |x− 1||x2 + x+ 1|

< δ(|x|2 + |x|+ 1) <
ε

7
· (4 + 2 + 1) = ε.

Therefore, f is continuous at x = 1.

2. (10 marks) Let f : [0, 1] → R be uniformly continuous on [0, 1]. Assume that

f + g is uniformly continuous on [0, 1].

Prove that g is uniformly continuous on [0, 1].

Proof. Assume that f and f + g be uniformly continuous on [0, 1].
Let ε > 0. There is an δ1 > 0 such that

|x− a| < δ1 for all x, a ∈ [0, 1] implies |f(x)− f(a)| < ε

2
.

and there is an δ2 > 0 such that

|x− a| < δ2 for all x, a ∈ [0, 1] implies |f(x) + g(x)− f(a)− g(a)| < ε

2
.

Choose δ = min {δ1, δ2}. Let x, a ∈ [0, 1] such that |x− a| < δ. Apply the triangle inequality, we
have

|g(x)− g(a)| − |f(x)− f(a)| < |f(x) + g(x)− f(a)− g(a)| < ε

2
.

It follows that

|g(x)− g(a)| = ε

2
+ |f(x)− f(a)|

<
ε

2
+

ε

2
= ε.

Thus, g is uniformly continuous on [0, 1].
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that
√
x ≤ x for all x ≥ 1.

Proof. Let a > 1 and define

f(x) =
√
x− x where x ∈ [1, a].

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f(1) = 0

f ′(x) =
1

2
√
x
− 1

By the Mean Value Theorem, there is a c ∈ (1, a) such that

f(a)− f(1) = f ′(c)(a− 1)

√
a− a =

(
1

2
√
c
− 1

)
(a− 1)

From c > 1, it leads to
√
c > 1 or 2

√
c > 2 > 1. So, 1

2
√
c
< 1. We have

1

2
√
c
− 1 < 0.

Since a > 1, a− 1 > 0. Therefore,

√
a− a =

(
1

2
√
c
− 1

)
(a− 1) < 0

Therefore, We conclude that
√
x ≤ x for all x ≥ 1.
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4. (10 marks) Let f(x) = ex − e−x where x ∈ R.

4.1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.

Proof. Let x, y ∈ R and x ̸= y. WLOG x > y. Then −x < −y. We obtain

ex > ey and e−x < e−y.

So, −e−x > −e−y. It follows that

ex − e−x > ey − e−y

f(x) > f(y)

So, f(x) ̸= f(y). Therefore, f is injective in R.

4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that
f−1 differentiable on R.
Solution. Since f is injective, f−1 exists. It is clear that f is continous on R. By IFT, we
conclude that f−1 differentiable on R.

4.3 (3 marks) Compute (f−1)′(3
2
).

Solution. We see that f ′(x) = ex + e−x and

f(ln 2) = eln 2 − e− ln 2 = 2− 1

2
=

3

2
.

So f−1(3
2
) = ln 2. By IFT,

(f−1)′
(
3

2

)
=

1

f ′(f−1(3
2
))

=
1

f ′(ln 2)

=
1

eln 2 + e− ln 2

=
1

2 + 1
2

=
2

5
#
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5. (10 marks) Define

f(x) =

{
1 if x = 1

2 if x ∈ (0, 1) ∪ (1, 2)

Use definition to show that f is integrable on [0, 2]

Solution. Let ε > 0. Case ε ≤ 2. Choose P =
{
0, 1− ε

4
, 1, 1 +

ε

4
, 2
}

.

X

Y

0 1 2

1

2

1− ε
4

1 + ε
4

We obtain

U(f, P ) = 2
(
1− ε

4

)
+ 2

(ε
4

)
+ 2

(ε
4

)
+ 2

(
1− ε

4

)
L(f, P ) = 2

(
1− ε

4

)
+ 1

(ε
4

)
+ 1

(ε
4

)
+ 2

(
1− ε

4

)
U(f, P )− L(f, P ) =

ε

2
< ε.

Case ε > 2. Choose P = {0, 1, 2}. Then

U(f, P ) = 2 (1− 0) + 2 (2− 1)

L(f, P ) = 1 (1− 0) + 1 (2− 1)

U(f, P )− L(f, P ) = 2 < ε.

Thus, f is integrable on [0, 2].
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6. (10 marks) Let f(x) = 2x+ 1 where x ∈ [0, 1] and

P =

{
2j + 1

2n+ 1
: j = 0, 1, ..., n

}
=

{
1

2n+ 1
,

3

2n+ 1
,

5

2n+ 1
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f).
Solution. Choose The Right End Point , i.e., f(tj) = f( 2j+1

2n+1
) on the subinterval [xj−1, xj]

and

∆xj =
2j + 1

2n+ 1
− 2(j − 1) + 1

2n+ 1
=

2

2n+ 1
for all j = 1, 2, 3, ..., n.

We obtain
n∑

j=1

f(tj)∆xj =
n∑

j=1

f

(
2j + 1

2n+ 1

)
2

2n+ 1
=

2

2n+ 1

n∑
j=1

[
2

(
2j + 1

2n+ 1

)
+ 1

]

=
2

2n+ 1

[
2

2n+ 1

n∑
j=1

(2j + 1) +
n∑

j=1

1

]

=
2

2n+ 1

[
2

2n+ 1

(
2

n∑
j=1

j +
n∑

j=1

1

)
+ n

]

=
2

2n+ 1

[
2

2n+ 1

(
2 · n(n+ 1)

2
+ n

)
+ n

]
=

2

2n+ 1

[
2(n2 + 2n)

2n+ 1
+ n

]
=

4(n2 + 2n)

(2n+ 1)2
+

2n

2n+ 1

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

4(n2 + 2n)

(2n+ 1)2
+

2n

2n+ 1
= 1 + 1 = 2 #
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ x2

1

g(t)√
t
dt where x > 0.

Show that
∫ 1

0

f(x) + g(x) dx = 0.

Hint: Use integration by part to
∫ 1

0

f(x) dx.

Solution. By the First Fundamental Theorem of Calculus and Chain rule,

f ′(x) =
g(x2)√

x2
· 2x = 2g(x2).

By integration by part, we obtain∫ 1

0

f(x) dx =

∫ 1

0

x′f(x) dx = [xf(x)]10 −
∫ 1

0

xf ′(x) dx

= 1f(1)− 0f(0)−
∫ 1

0

x · 2g(x2) dx

= f(1)−
∫ 1

0

g(x2)(x2)′ dx

=

∫ 1

1

g(t)√
t
dt−

∫ 1

0

g(ϕ(x))ϕ′(x) dx Change of Variable ϕ(x) = x2

= 0−
∫ ϕ(1)

ϕ(0)

g(t) dt

= −
∫ 1

0

g(t) dt

= −
∫ 1

0

g(x) dx.

Thus,
∫ 1

0

f(x) + g(x) dx =

∫ 1

0

f(x) dx+

∫ 1

0

g(x) dx = 0.
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8. (10 marks) Evaluate the infinite sum :
∞∑
k=1

1

2023k

[
2022− 1

2023k−1
+

1

2023k+1

]
.

Hint: Use Telescoping and Geometric Series.
Solution. Consider

1

2023k

[
2022− 1

2023k−1
+

1

2023k+1

]
= 2022 · 1

2023k
− 1

20232k−1
+

1

20232k+1

= 2022 · 1

2023k
−
(

1

20232k−1
− 1

20232k+1

)
.

We obtain
∞∑
k=1

1

2023k

[
2022− 1

2023k−1
+

1

2023k+1

]
=

∞∑
k=1

[
2022 · 1

2023k
−
(

1

20232k−1
− 1

20232k+1

)]
= 2022

∞∑
k=1

1

2023k
−

∞∑
k=1

(
1

20232k−1
− 1

20232k+1

)
.

= 2022 ·
1

2023

1− 1
2023

−
(

1

2023
− lim

k→∞

1

20232k+1

)
= 1− 1

2023
=

2022

2023
#
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9. (10 marks) Let {ak} and {bk} be sequences in R. Prove that

if
∞∑
k=1

ak and
∞∑
k=1

bk converges absolutely, then
∞∑
k=1

(ak + bk) converges absolutely.

Hint: Use Cauchy criterion

Proof. Assume that
∞∑
k=1

ak and
∞∑
k=1

bk converges absolutely. Then
∞∑
k=1

|ak| and
∞∑
k=1

|bk| converge.

Let ε > 0. By Cauchy criterion, there is an N1 ∈ N such that

m > n ≥ N1 implies
m∑

k=n

|ak| <
ε

2
.

and there is an N2 ∈ N such that

m > n ≥ N2 implies
m∑

k=n

|bk| <
ε

2
.

Choose N = max{N1, N2}. Let m,n ∈ N such that m > n ≥ N . We obatin
m∑

k=n

|ak + bk| ≤
m∑

k=n

(|ak|+ |bk|)

=
m∑

k=n

|ak|+
m∑

k=n

|bk|

<
ε

2
+

ε

2
= ε.

Thus,
∞∑
k=1

|ak + bk| converges. This result concluded that
∞∑
k=1

(ak + bk) converges.
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10. (10 marks) Prove that
∞∑
k=1

(−1)k ln
(
1 +

1

k

)
is conditionally convergent.
Solution. Firstly, we see that

lim
k→∞

ln
(
1 +

1

k

)
= 0.

Next, let f(x) = ln
(
1 +

1

x

)
where x ≥ 1. The derivative of f(x) is

f ′(x) =
1

1 + 1
x

·
(
− 1

x2

)
< 0 for all x ≥ 1.

So,
{

ln
(
1 +

1

k

)}
is decreasing. By Alternating Series Test (AST),

∞∑
k=1

(−1)k ln
(
1 +

1

k

)
converges.

Finally, we consider
∞∑
k=1

∣∣∣∣(−1)k ln
(
1 +

1

k

)∣∣∣∣ = ∞∑
k=1

ln
(
1 +

1

k

)
and

lim
k→∞

ln
(
1 + 1

k

)
1
k

= lim
k→∞

1
1+ 1

k

·
(
− 1

k2

)
− 1

k2

= lim
k→∞

(
1

1 + 1
k

)
= 1 > 0

Since
∞∑
k=1

1

k
diverges (p = 1), by the Limit Comparision Test, it implies that

∞∑
k=1

ln
(
1 +

1

k

)
diverges.

Therefore, we conclude that
∞∑
k=1

(−1)k ln
(
1 +

1

k

)
is conditionally convergent.
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