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No.1

1. (10 marks)

2. (10 marks)

3. (10 marks)

4. (10 marks)

Let a € R. Prove that
a®+ 2
a? 41

> 2.

Let a € R. Prove that
a? + 3
a? 4+ 2

> 2.

Let a € R. Prove that
a’ + 4
a? +

> 2.

w

Let a € R. Prove that
a’>+5
a? +

> 2.

B



No.2

1. (10 marks) Let z,y € R. Prove that
if |[x4+y|l=|r—y|, then z|y|+y|x|=0.
2. (10 marks) Let z,y € R. Prove that
if |22 +y|=|z+2y|, then |xy|= 2>
3. (10 marks) Let 2,y € R. Prove that
if |22 —y|=|z—2y|, then |xy|= 22
4. (10 marks) Let x,y € R. Prove that

if |22+ y|=|z+2y|, then |zy|= 1>



No.3

‘n €N 3.

1. (10 marks) Let A:{l— 5
ns+1

What are supremum and infimum of A ? Verify (proof) your answers.

2. (10 marks) Let A:{l— :nGN}.

n?+2
What are supremum and infimum of A ? Verify (proof) your answers.

3. (10 marks) Let A= {2— 2n
ns+1

What are supremum and infimum of A ? Verify (proof) your answers.

‘n €N 3.

‘n €N 3.

4. (10 marks) Let A= {2— 5
ne + 2

What are supremum and infimum of A ? Verify (proof) your answers.



No.4

1. (10 marks) Use definition to prove that

lim —n(n +2)

exists.
n—00 n2 + 1

2. (10 marks) Use definition to prove that

i n(n + 3)

exists.
n—00 n2 + 9

3. (10 marks) Use definition to prove that

i n(n + 3)

exists.
n—00 n2 +

4. (10 marks) Use definition to prove that

i n(n +5)

exists.
n—oo N2 +



No.5

1. (10 marks) Assume that {z,} is a convergent sequence in R. Prove that

71113)10(:6” — Zp41) = 0.

2. (10 marks) Assume that {x,} is a convergent sequence in R. Prove that

Jirgo(xn — Zpy2) = 0.

3. (10 marks) Assume that {x,} is a convergent sequence in R. Prove that

nh_}rglo(xn — Zpys3) = 0.

4. (10 marks) Assume that {z,} is a convergent sequence in R. Prove that

7}1_520(33” — Tpayq) = 0.



No.6

1. (10 marks) Let {a,} be a sequence in R such that there is an N € N
satisfying the statement :

1
if n,m > N, then |z, —z,| < Z for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

2. (10 marks) Let {a,} be a sequence in R such that there is an N € N
satisfying the statement :

1
if n,m > N, then |z, —x,| < 2 for all k£ € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

3. (10 marks) Let {a,} be a sequence in R such that there is an N € N
satisfying the statement :

1
if n,m > N, then |z, — x| <13 for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

4. (10 marks) Let {a,} be a sequence in R such that there is an N € N
satisfying the statement :

1

if n,m > N, then |z, —z,| < i for all k € N.
Prove that {a,} converges.

Hint: Show that {a,} is Cauchy.



No.7

1. (10 marks) Let F be a closed set. Assume that {x,} is a sequence in F’
(it means that x,, € F' for all n € N). Prove that

if x, >aasn — oo, then a€F.

No.8

1. (10 marks) Use definition to prove that

, 1
lim (az + —) = 2.
z—1 €T

2. (10 marks) Use definition to prove that

, 1
lim (sc + —) = (.
r——1 x

3. (10 marks) Use definition to prove that

, )
lim (:U + —) = 3.
r—2 €T

4. (10 marks) Use definition to prove that

_ 2
lim (:1: _ —) = —3.
rT——2 T



No.9

1. (10 marks) Let f be a real value function. Assume that

lim (z+ f(x)) = o0,

r—1t

Prove that f(z) - +ocas oz — 17.

2. (10 marks) Let f be a real value function. Assume that

lim (z 4+ f(x)) = 4o0.

r—1—

Prove that f(x) - +ocoasz — 17

3. (10 marks) Let f be a real value function. Assume that

lim (x4 f(z)) = —o0.

r—1Tt

Prove that f(x) - —occ asx — 17.

4. (10 marks) Let f be a real value function. Assume that

lim (x + f(z)) = —o0.

r—1—

Prove that f(z) - —occasx — 17.



No.10

1. (10 marks) Use definition (sequence) to prove that

lim (1 — \/ﬁ) = —0Q.

n—oo

2. (10 marks) Use definition (sequence) to prove that

lim (\/ﬁ— 1) = 00.

n—o0

3. (10 marks) Use definition (function) to prove that

lim (V£U2—|—1—$> = 0.

T—00

4. (10 marks) Use definition (function) to prove that

lim (\/x2+1+x> = 0.

T—r—00



Solution Midterm : MAC3309 Mathematical Analysis

No.1

1. (10 marks) Let a € R. Prove that
a? +2
a’+1

> 2.

Proof. Let a € R. By the fact that a® > 0, we obtain

[(a®+2) —2]* >0
(a®> +2)% —4(a®>+2)+4>0

(a®> +2)2 > 4(a®>+2) -4
(a®>+2)2>4(a®>+2-1)
(a® +2)* > 4(a® +1)
(a2 +2)%2>2va?+1
la® +2| > 2v/a?2 + 1
2
a* +2 9
a’>+1
2. (10 marks) Let a € R. Prove that
2
a”+3 > 9.
a?+2
Proof. Let a € R. By the fact that a®> > 0, we obtain
[(a® +3) = 3]* >0
(a®> +3)% —4(a®*+3)+4>0
(a®> +3)% > 4(a®>+3) -4
(a®> +3)% > 4(a®> +3—1)
(a®+3)* > 4(a® +2)
(a2 +3)2 > 2va?+2
la® + 3| > 2V a? + 2
2
3
a® + 9




3. (10 marks) Let a € R. Prove that
a?+4
a’+3

> 2.

Proof. Let a € R. By the fact that a? > 0, we obtain

[(a®>44) —4]* >0
(a®> +4)® —4(a®>+4)+4>0

(a® +4)% > 4(a®>+4) — 4
(a® +4)* > 4(a®> +4 1)
(a® +4)% > 4(a® + 3)
V(a2 +4)2>2Va?+3
la® + 4] > 2v/a2 +3
a’+4
a2++ 3 :
4. (10 marks) Let a € R. Prove that ,

Proof. Let a € R. By the fact that a® > 0, we obtain

[(a®*45) =52 >0

(a®> +5)% —4(a®>+5)+4>0
(a® + 5)*

(a® + 5)*
(a® + 5)*
(a® +5)?
la® + 5| >
a?+5
a?+4

(a®> +5)—4
(a®+5—1)
(a® + 4)

|\/ IV I\/I

il

v

4
4
4
2vVa
2

2+
2+

i

a

> 2



No.2

1. (10 marks) Let z,y € R. Prove that
if |z+y|=|z—y|, then z|y|+y|z|=0.
Proof. Let x,y € R. Assume that |z + y| = |z — y|. Then

x4y =

& — y|?
(x+y)* = (z—y)’
$2+2xy+y =z 2:L‘y—|—y
dzy =0
0

So, z = 0 or y = 0. It implies that z|y| = 0 and |z|y = 0. Thus, z|y| + y|z| = 0.
2. (10 marks) Let z,y € R. Prove that
if |22 +y|=|r+2y|, then |zy|= 22
Proof. Let x,y € R. Assume that |2z + y| = |z + 2y|. Then

122 +y|? = |z + 2y)?
2z +y)? = (z + 2y)?
42% + 4oy + y? = 22 + 4oy + 4y?

32? = 3y°
22 = 2
V= /i
|z = [yl

It implies that
eyl = |zlly| = |a||z] = |2 = 2*.



3. (10 marks) Let x,y € R. Prove that
if |22 —y|=|r—2y|, then |xy|= 22
Proof. Let z,y € R. Assume that |2z — y| = | — 2y|. Then

22 —y|? = o — 2y
(22 —y)* = (z — 2y)?
4x? — Ay + y? = 22 — day + 492

32% = 3y2
22 =2
Va2 = /i
|| = |yl
It implies that
|yl = |||yl = |=[|z] = |2 = 2*,

4. (10 marks) Let z,y € R. Prove that
if |22 +y|=|r+2y|, then |zy|= 2.
Proof. Let x,y € R. Assume that |22 + y| = |z + 2y|. Then

122 + y|> = |z + 2y
(22 4 9)% = (z + 2y)?
42 4+ dzy + % = 2 + oy + 492

32?2 = 3y?
22 = o2
Vi = P
|z = [y

It implies that
lzy| = |z|ly| = lylly| = ly|* = v*.



No.3

n
:n € Np.

2yl "

What are supremum and infimum of A ? Verify (proof) your answers.

a={33 5}
10

1. (10 marks) Let A= {1—

Solution. Consider

)

| =
atl w

Claim that inf A = % and sup A = 1.

Proof. We will prove that inf A = %
Let n € N. By the fact that (n —1)2 >0,

n?—2n+1>0

n?+1 > 2n
1 n
- >
2 " n2+1
1 n
2 n?+1
Ll
2 n?+1
o
2~ n?+1
Thus, % is a lower bound of A.
Let ¢y be a lower bound of A. Then
fogl—m forallne A
Since 1 € N, % =1- ﬁ Thus, £y < %
Proof. We will prove that sup A = 1.
Let n € N. Then o > 0. So, — n < 0. Thus,
n?+1 n?+1
<
n?+1"—

So, 1 is an upper bound of A.
Let u be an upper bound of A such that u < 1. So, 1 —u > 0.

1
By Achimedean principle, there is ng € N such that — < 1 — u.

no
1
Since n% +1> n%, 3 < —. We ontain
ng +1 ng
n n 1
m_om_ 1y,
ng+1 7" ng no
Thus,
n
w<lo 10
ng+1

So, u is not an upper bound of A. It is contradiction.



n
2. (5 k Let A=<1———": .
(5 marks) et { 12 nGN}

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider

Claim that inf A = % and sup A = 1.

Proof. We will prove that inf A = %
Let n € N. Thenn —1>0 > 1. So, (n —1)2 > (n — 1). We obtain

n?—2n+1>n-1

n?+2 > 3n
1 n
- >
37 n2+2
1 n
<
37 n?+2
I PR
3 n2+2
2_, . n_
3~ n?+2
Thus, % is a lower bound of A.
Let £y be a lower bound of A. Then
n
fogl—m foraHTLEA
Since 1 € N, % =1- ﬁ Thus, £y < %
Proof. We will prove that sup A = 1.
Let n € N. Then ——— > 0. So, — < 0. Thus,
n2+2 n2+ 2
— <1.
nz+2 -

So, 1 is an upper bound of A.
Let u be an upper bound of A such that © < 1. So, 1 —u > 0.

1
By Achimedean principle, there is ng € N such that — <1 — .

no
1
Since n§ +2 > ng, — < —. We ontain
ng+2 7 ng
n n 1
o m_ 1,
ng+2 7 ng ng
Thus,
n
u<l-— 5 0 .
ng + 2

So, u is not an upper bound of A. It is contradiction.



n
. (5 k Let A=<2— ——: .
3. (5 marks) et { P nGN}

What are supremum and infimum of A ? Verify (proof) your answers.

Solution. Consider

Claim that inf A = % and sup A = 2.

Proof. We will prove that inf A = %
Let n € N. By the fact that (n —1)2 >0,

n?—2n+1>0

n?+1>2n
1 n
- >
2 " n2+1
1 n
<
2= n?2+1
g_lcg M
2 n?+1
391
2~ n?+1
Thus, % is a lower bound of A.
Let £y be a lower bound of A. Then
lo<2——"— forallneA
— ——— foralln
0= n?+1
Since 1 € N, % =2— ﬁ Thus, £y < %
Proof. We will prove that sup A = 2.
Let n € N. Then > 0. So, — < 0. Thus,
n?+1 n?+1
— < 2.
n?z+1 "~

So, 2 is an upper bound of A.
Let u be an upper bound of A such that u < 2. So, 2 —u > 0.

1
By Achimedean principle, there is ng € N such that — < 2 — .

no
1
Since n§ + 1> ng, — < —. We ontain
ng+1 ng
n n 1
o m_ 1,
ng+1 ng ng
Thus,
n
u<2-— 5 0 .
ng+1

So, u is not an upper bound of A. It is contradiction.



n
4. (5 k Let A=32———: .
(5 marks) et { 12 nGN}

What are supremum and infimum of A ? Verify (proof) your answers.

a={2 B 10
371179

Solution. Consider

Claim that inf A = % and sup A = 2.

Proof. We will prove that inf A = g
Let n € N. Thenn —1>0 > 1. So, (n —1)2 > (n — 1). We obtain

n?—2n+1>n-1

n?+2 > 3n
1 n
- >
37 n2+2
1 n
<
37 n?+2
gty n_
3 n2+2
by
3~ n?+2
Thus, g is a lower bound of A.
Let £y be a lower bound of A. Then
n
KOSQ—m foraHTLEA
Since 1 € N, % =2— ﬁ Thus, £y < %
Proof. We will prove that sup A = 2.
Let n € N. Then > 0. So, — < 0. Thus,
n2+2 n2+ 2
— < 2.
nz+2 -

So, 2 is an upper bound of A.
Let u be an upper bound of A such that u < 2. So, 2 —u > 0.

1
By Achimedean principle, there is ng € N such that — < 2 — .

no
1
Since n§ +2 > ng, — < —. We ontain
ng+2 7 ng
n n 1
o m_ 1y,
ng+2 7 ng ng
Thus,
n
u<2-— 5 0 .
ng + 2

So, u is not an upper bound of A. It is contradiction.



No.4

1. (10 marks) Use definition to prove that

n(n +2)

im 3 exists.
n—oo N4+ 1

Proof. Let € > 0. Then % > 0 . By Archimedean principle, there is an N € N such that

1 1
Let n € N such that n > N. Thenfgﬁ. SinceO<2n—1<2nandn2+1>n2,
n

2n—1 2n —1 2n_2

n?+1 n? n2 n
Hence,
n(n + 2) 1 = (n?+2n) — (N2 +1)
n2+1 N n2+1
2n—1 2<2<
= —< =<
n2+1 n - N
2
Thus, limmzl

n—oo n2 +1
2. (10 marks) Use definition to prove that

i M +3)

exists.
n—oo n2 —+

Proof. Let € > 0. Then % > 0 . By Archimedean principle, there is an IV € N such that

1 1
Let n € N such that n > N. Then—gﬁ. Since 0 < 3n — 2 < 3n and n? + 2 > n?,
n

3n—2 3n—2 3n 3

< < —= .
n2 42 n? n?2 n

Hence,
n(n+3)_1 | (n? 4 3n) — (n? +2)
n?+2 B n?+ 2
3n—2<3<3<
=< —-<—=<ec
n2+2 n - N
Thus, lim le.

n—oo m2 + 2

! <
N

! <
N

N ™

Wl m



3. (10 marks) Use definition to prove that

lim n(n +3)

3 exists.
n—o0o0 N“ 4+

Proof. Let € > 0. Then g > 0 . By Archimedean principle, there is an N € N such that

1 1
Let n € N such that n > N. Then—gﬁ. Since0<3n—1<3nandn2+1>n2,
n

3n—1 3n—1 3n 3
<

n?+1 n? n2  n
Hence,
n(n+3) - (n?+3n) — (n2+1)
n?+1 B n? 41
3n—1 3 3
= < —-—<—=<e.
2+l n-N
Thus, lim w =1
n—oo n4+1
4. (10 marks) Use definition to prove that
n{n+5)

lim exists.

n—oo n2 +2

Proof. Let € > 0. Then g > 0 . By Archimedean principle, there is an N € N such that
1 1
Let n € N such that n > N. Then — < N Since 0 < 5n — 2 < 5n and n? + 2 > n?,
n
on — 2 <5n—2 <5j_§
n2 42 n2 n2 n’
Hence,
n(n + 5) 4l (n? 4+ 5n) — (n? +2)
n2 4+ 2 N n2 4+ 2
_m=2 b .
" n2+2 n~ N '
Thus, lim M =1.

n—oo n2 +2

! <
N

Sa
N

Wl m

N ™



No.5
1. (10 marks) Assume that {z,} is a convergent sequence in R. Prove that

nl;ngo(xn — ZTpy1) = 0.

Proof. Assume that z,, — a as n — oo for some a € R.
Let € > 0. Then there is an N € N sucth that

3

5" - (%)

for all n > N, it implies that |z, —a| <
Let n € N such that n > N. Then n+ 1 >n > N. So, n and n + 1 satisfy (). We obtain
[Tn = &ny1 — 0 = [(zn — @) — (@n41 — a)
<l|zy —a| + |zn41 — af

<§+E_€
2 2 7

2. (10 marks) Assume that {x,} is a convergent sequence in R. Prove that

nango(xn — Tpy2) = 0.

Proof. Assume that z,, — a as n — oo for some a € R.
Let € > 0. Then there is an N € N sucth that

for all n > N, it implies that |z, —a| < g e (%)

Let n € N such that n > N. Then n+2 >n > N. So, n and n + 2 satisfy (). We obtain
[T = Tny2 — 0] = [(zn — @) — (Tn42 — a)
< |xn - CL| + |xn+2 - CL|

<§+§—E
2 2 7



3. (10 marks) Assume that {z,} is a convergent sequence in R. Prove that

nll_}HQlo(l’n — Tpt3) = 0.

Proof. Assume that z, — a as n — oo for some a € R.
Let € > 0. Then there is an N € N sucth that

for all n > N, it implies that |z, —a| < g. e (%)

Let n € N such that n > N. Then n+ 3 >n > N. So, n and n + 3 satisfy (x). We obtain

2 — Zpts — 0 = [(zn — a) — (Tn43 — @)
< |xn - a| + |33n+3 - a|

<§+§_6
2 2 7

4. (10 marks) Assume that {z,} is a convergent sequence in R. Prove that

nh_{r;o(:vn — Tpyq) = 0.

Proof. Assume that z,, — a as n — oo for some a € R.
Let € > 0. Then there is an N € N sucth that

3

5 . (%)

for all n > N, it implies that |z, —a| <
Let n € N such that n > N. Then n+4 >n > N. So, n and n + 4 satisfy (). We obtain

|Tn = Tnta — 0] = [(zn — a) = (Tn4a — a)]

< |zn — al + [Tnsa — al

<5+€
—+ - =c.
2 2



No.6

1. (10 marks) Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
. 1
if n,m > N, then |$n_$m|<E for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

Proof. Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
1
if n,m > N, then ]a;n—a;m]<% for all kK € N. e (%)
Let € > 0. Let n,m € N such that n,m > N. Then (x) holds, i.e.,

1
|y — x| < z for all K € N e (x%)
1
Since € > 0, by Archimedean property, there is d € N such that p < e. From (xx),

1
— < =<e.
|y — Ty pi €

because d € N. So, {z,,} is Cauchy. We conclude that {a,} converges.



2. (10 marks) Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
. 1
if n,m > N, then ]mn—mm\<ﬁ for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

Proof. Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
1
if n,m > N, then |z, — 2] < for all kK € N. e (%)
Let € > 0. Let n,m € N such that n,m > N. Then (x) holds, i.e.,

1
|zy, — 2| < 2 for all k € N N ESY

1
72<E.

1
Since 1/ > 0, by Archimedean property, there is d € N such that P < +/e. Then 7

From (%),

|xn—xm|<ﬁ<f—:.

because d € N. So, {z,} is Cauchy. We conclude that {a,} converges.



3. (10 marks) Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
. 1
if n,m > N, then ’$n—$m\<@ for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

Proof. Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
1
if n,m > N, then |z, — 2] <3 for all kK € N. e (%)

Let € > 0. Let n,m € N such that n,m > N. Then (x) holds, i.e.,

1
|zy, — 2| < = for all k € N N ESY
. . . 1 1
Since /£ > 0, by Archimedean property, there is d € N such that p < /e. Then B <e.

From (%),

|xn—xm|<$<f—:.

because d € N. So, {z,} is Cauchy. We conclude that {a,} converges.



4. (10 marks) Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
. 1
if n,m > N, then ]mn—mm\<y for all k € N.

Prove that {a,} converges.
Hint: Show that {a,} is Cauchy.

Proof. Let {a,} be a sequence in R such that there is an N € N satisfying the statement :
1
if n,m > N, then |z, — 2] < for all kK € N. e (%)

Let € > 0. Let n,m € N such that n,m > N. Then (x) holds, i.e.,

1
|zy, — 2| < = for all k € N N ESY
. . . 1 1
Since v/ > 0, by Archimedean property, there is d € N such that p < /e. Then 7 <e.

From (%),

|xn—xm|<ﬁ<f—:.

because d € N. So, {z,} is Cauchy. We conclude that {a,} converges.



No.7

1. (10 marks) Let F be a closed set. Assume that {x,} is a sequence in F' (it means that z,, € F for all
n € N). Prove that

if ©,—>aasn— oo, then a€F.

Proof. Let F be a closed set. Assume that {z,} is a sequence in F'. We will prove by contradiction.
Assume that x,, - a asn — oo and a ¢ F. Then a € F°.
Since F'¢ is open, there § > 0 such that (a — d,a + ) C F*. So,

(a—d,a+d6)NF =2, e (%)
From z, — a as n — 00, (¢ =) there is an N € N such that n > N
|zn, — al < 9.

Then z, € (a — d,a + ). But x,, € F, this is contradiction to (x).
Thus, a € F. O



No.8

1. (10 marks) Use definition to prove that

. ( 1 >
Iim(x+—| =
r—1 X

Proof. Let € > 0. Choose § = min {0.5, \/i} Suppose that 0 < |z — 1| < §. Then 0 < |z — 1| < 0.5,

0b<z <1 or 1<x<1.5. So,

0.5 < |z| < 1.
o1
We obtain |—’ < 2. Then,
x
m+1_2‘: x2—2x+1’: (x —1)2
x x x
1
= — |z -1
||
<2 52<2-§:5

1
Therefore, lim <ZC + ) = 2.
z—1 x
2. (10 marks) Use definition to prove that
1
lim (x + > = 0.
Tz——1 X
Proof. Let € > 0. Choose 6 = min {0.5, %} Suppose that 0 < |z + 1| < d. Then 0 < |z + 1| < 0.5,

—1lb<zx<-1 or —1<z<-0.5. So,

0.5 < |z| < 1.5.
.1
We obtain W < 2. Then,
x
1 1 1
x+—0‘: s ':~|:c+1|
<2.5<2 S=¢
5 =€

r——1

1
Therefore, lim (a: + > =0.
x



3. (10 marks) Use definition to prove that

. 2
lim <m + > =3.
r—2 €T

Proof. Let € > 0. Choose § = min {1, Z} Suppose that 0 < |z — 2| < §. Then 0 < |z — 2| < 1,

l<x<?2 or 2<z<3. So,

1< |z <3.
i 1
We obtain |z| < 3 and Tl < 1. Then,
x
x+2_3‘: x2—3x+2': (:E—l)(:c—Z)’
x x x
1
=L ge -
]
=1(|z]+1)0 < (3+1)
<4-Z:5.

T—2

Therefore, lim (x + i) =3.
4. (10 marks) Use definition to prove that
L, <w * i) =
Proof. Let € > 0. Choose 6 = min {1, Z} Suppose that 0 < |z — 2| < J. Then 0 < |z + 2| < 1,

—3<r< -2 or —2<z<-—1. So,

1< |z <3.
) 1
We obtain |z| < 3 and B < 1. Then,
x
m+2+3‘: x2+3x+2': (x+1)(a:+2)‘
x x x
1
= — - |z+ 1|z + 2|
]
=1(|z]+1)0 < (3+ 1)
<4-§:£.

2
Therefore, lim <x + > = —3.
x

T——2



No.9

1. (10 marks) Let f be a real value function. Assume that

lim (z+ f(z)) = +o0.

z—1t

Prove that f(z) — +oo as @ — 17,

Proof. Let f be a real value function. Assume that

lim (x4 f(z)) = 4o0.

z—1t

Let M > 0. There is a 6; > 0 such that 0 < z — 1 < ;. It implies that
x+ f(z) > M+ 2. (%)

Chose 6 = min{1,d;}. Let € R such that 0 <z — 1 < 4.
Then0<z—1<1lorl<az<2 So, —x > —2and x satisfies ().
We obtain

fx)=(+ f(x)—z>(M+2)—2=M.
Thus, f(z) = +oco as & — 17

2. (10 marks) Let f be a real value function. Assume that

lim (x4 f(z)) = +o0.

z—1—

Prove that f(z) = +ooasax — 17,

Proof. Let f be a real value function. Assume that

lim (z+ f(z)) = +oo.

z—1—

Let M > 0. There is a §; > 0 such that —§; < x — 1 < 0. It implies that
z+ f(z) > M+ 1. (%)

Chose 6 = min{1,d;}. Let € R such that —§ <2 —1 < 0.
Then -1 <z —-1<0o0r0<z<1. So, —z > —1 and x satisfies (x).
We obtain

fl@)=(@+f(z)—x>(M+1)—1=M.

Thus, f(z) = +ocoasz — 17.



3. (10 marks) Let f be a real value function. Assume that

lim (x4 f(z)) = —c0.

z—1t

Prove that f(x) - —oco as x — 17.

Proof. Let f be a real value function. Assume that

lim (x+ f(z)) = —oc.

z—1t

Let M < 0. There is a §; > 0 such that 0 < x — 1 < §;. It implies that
z+ f(x) < M. (%)

Chose § = min{1,d;}. Let x € R such that 0 <z —1 < ¢.
Then0<z—1<lorl<z<2 So, —x < —1 and x satisfies ().
We obtain

flz)=(z+ f(x)) —x < M —-1< M.
Thus, f(r) - —occas x — 1T,

4. (10 marks) Let f be a real value function. Assume that

lim (x+ f(z)) = —oc.

z—1-

Prove that f(z) - —ccasz — 17.

Proof. Let f be a real value function. Assume that

lim (x4 f(z)) = —cc.

z—1—

Let M < 0. There is a 67 > 0 such that —0; < x — 1 < 0. It implies that
x+ f(x) < M. (%)

Chose § = min{1,d;}. Let z € R such that —6 <z —1 <0.
Then —1<z—-1<0or0<xz <1 So, —z <0 and x satisfies ().
We obtain

fl@)=(z+ f(x)) —x < M+0= M.

Thus, f(x) > —occasx — 1.



No.10

1. (10 marks) Use definition (sequence) to prove that

lim (1—+/n) = —o0.

n—oo

Proof. Let M € R.
Case M > 1. It is easy to see that

1-yn<0<1<M forallneN.

Case M < 1. Then 1 — M > 0. By Arichimedean property, there is an N € N such that (1 — M)2 < N.

It is equivalent to
1—VN < M.

Let n € N such that n > N. Then v/n > v/N. So, —v/n < —V/N. We obtain
1—-vn<1-+vN< M.

2. (10 marks) Use definition (sequence) to prove that

lim (vn —1) = oo.

n—0o0

Proof. Let M € R.
Case M < —1. It is easy to see that

Vn—1>0>—-1>M forallneN.

Case M > —1. Then M + 1 > 0. By Arichimedean property, there is an N € N such that (1 + M)? < N.
It is equivalent to
VN —1> M.

Let n € N such that n > N. Then \/n > V/N. We obtain

Vn—1>vVN—-1> M.



3. (10 marks) Use definition (function) to prove that

lim <\/x2+1—m> =0.

T—r00

1
Proof. Let € > 0. Choose M = —. Then M > 0.
€

1 1
Let € R such that x > M > 0. It follows that — < U We obtain
T

Va2 +1
"/3624-1—%—0‘—‘(’/902—1-1—35) zc+14+2x

.\/:1627—1—14-:1:
1
:’\/m—i-x
<% N2+ l+zr>za
<L-.
M

Thus, le <\/ 2 4+1-— a:) =0.
4. (10 marks) Use definition (function) to prove that

lim ( x2+1—|—fv>:0.

T—r—00

1
Proof. Let € > 0. Choose M = ——. Then M < 0.
€

1 1
Let € R such that x < M < 0. Then —x > —M > 0. It follows that — < YA We obtain
_x —_

V@ Fl-u
‘ x2+1+$—0’:‘(\/x2+1+x)-\/m
1
:‘ 2+1l—=2x
<% V2 4+l -2 > —x
L
-M

Thus, Er_n ( x2—|—1—|—x):0.



