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L4 MAC3309 Math Analysis

Some Definition to prove this examination.

1.

10.

11.

lim z, =a =
n—oo

lim z, = +o0 <—
n—oo

lim z, = —o0 <=
n—oo
lim f(z) =L =
T—a

lim f(z) =1L =
T—00

lim f(x)=1L =
T—r—00
lim f(x) = 400 =
T—a
lim f(x) = —o0 =
T—a
FE is open —
F' is closed =

x is a limit point of A <—

Ve>03dNeN, n>N — |z, —a| <&

VMeRIANeN, n>N —x, > M

VMeRINeN, n>N —x, < M

Ve>030>0,0<|z—a|<déd—|f(x)—L|<e

Ve>03dM eR, 2 >M — |f(x) - L|<e

Ve>03dMeR, e <M — |f(z) - L|<e

VM >036>0,0<|z—a|<d— f(z)>M

VM <036>0,0<|z—al<d— f(z) <M

Vee E30>0, (x—05,x+0)CE

F¢=R— F is open

Ve>0[(x—e,z)U(z,z+e)|NA#D
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

1. (10 marks) Let a,b and ¢ be real numbers. Prove that

a+b+ec 2< a2 + b2 + 2
3 = 3 '

Hint : Use the perfect square of three numbers, (z 4+ y + 2)? = 22 + 3% + 22 + 22y + 2yz + 222.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. (10 marks) Let x and y be real numbers. Prove that

if x+|yl=|z|+y, then zy>0.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

3. (10 marks) Define the set

21
A= : .
{2n+5 nEN}

Find sup A and inf A with proving them.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

4. (10 marks) Use Definition to prove that

. 6n%2+8
hm — =
n—oo 212 +5
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

5. (10 marks) Use Definition to prove that

2
lim ~ +5:+oo.
n—oo N+ H
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

6. (10 marks) Use definition to prove that

—— % is a Caucy sequence.
n?+1 v sed
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

7. (10 marks) Define a set

Show that 0 is a limit point of A.
Hint : Use Archimedean property.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

8. (10 marks) Use definition to prove that
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

9. (10 marks) Use definition prove that
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

10. (10 marks) Let {z,} and {y,} be sequences in real.
Assume that {z,} is bounded and y,, — 0 as n — oco. Prove that

TnYn — 0 as n — oo.
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L4 MAC3309 Math Analysis

Math SSRU

Solution Midterm Exam. 2/2023
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. (10 marks) Let a,b and ¢ be real numbers. Prove that

atbte\?_(a+b*+e
3 - 3 '
Hint : Use the perfect square of three numbers, (z +y + 2)? = 22 + 32 + 2% + 22y + 2yz + 2z2.

Proof. Let a,b and c¢ be real numbers. By the fact that

(a—0)2>0,(b—c)?>0and (c—a)?>0.
We obtain

0<(a—b)*+(b—c)*+(c—a)?
0 < (a® — 2ab + b%) + (b? — 2bc + ) + (¢ — 2ac + d?)
0 < 2a® + 2b% + 2¢* — 2ab — 2bc — 2ac
2ab + 2bc + 2ac < 24 + 2b? + 22
2ab + 2bc + 2ac + (a* + b* + ) < 2a% + 26 + 262 + (a® + b* + &)
a’? 4+ b% + & + 2ab + 2bc + 2ac < 3a® + 3b% + 3¢2
(a+b+c)? <3(a®+b* +?)
(a+b+c)? - 3(a® + b + 2)
9 - 9

a+b+c 2< a2 + b2 + 2
3 = 3
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. (10 marks) Let x and y be real numbers. Prove that
if x+|yl=|z|+y, then zy>0.

Proof. Let x and y be real numbers.
Assume that z + |y| = |z| +y. Then

yl = |z =y —=
(lyl = |z)* = (y — x)*

2

j2? = 2lzly| + |y* = 2* — 22y + ¢

22 = 2zy| + v* = 2% — 22y + 9°
|zy| = zy.
By the definition of absolute value, we conclude that

zy > 0.
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. MAC3309 Math Analysis 110 Y

3. (10 marks) Define the set

21
A= : .
{2n+5 nEN}

Find sup A and inf A with proving them.

7 21 21 }

ider A = —
Consider {3, 311 13’

Claim that infA =0 and sup 4 =3

Proof. infA=0
Let n € N. Then n > 0. So, 2n + 5 > 0. It’s clear that

1

2n+5
1

2n+5
21

n+5

0<

0-21 < -21

0<

Thus, 0 is a lower bound of A.
Suppose that there is a lower bound £y of A such that £y > 6. It follows that

0y <

for all :
S omis orallneN ()

20
From 2—10 > 0, by Archimendean property, there is an ng € N such that

1 24y

< —.
no 21

Since 2ng + 5 > 2ng,

21 21 21 1 21 24
< — = - . ==

< .
2ng+95 = 2ng 2 ng 2 21

= £o.

21
So, < lp. This is contradiction to (x). Therefore, inf A = 0.
2ng + 5
supA =3
Let n € N. Then n > 1. So, 2n > 2. We obtain 2n + 5 > 7 and then
1 1
< Z
2n+5 — 7
21 <21- 1 =3
2n+5 7

Thus, 3 is an upper bound of A.
Let u be an upper bound of A. Then

21
M5 <u forallneN.
Choose n = 1, we obtain
21
=3<
o) +5 -

Therefore, sup A = 3.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

4. (10 marks) Use Definition to prove that

6n°+8 5
noeo 2 +5
1
Proof. Let ¢ > 0. By Archimedean property, there is an N € N such that ~ < ;
1 1

1 1
Let n € N such that n > N. We obtain — < —. Since 2n? +5 > 2n? > n?, < —.
n~- N 2n2+5 n

1 1
From n? >n (.- n > 1), we have — < —. It follows that
n n

6n% +8 —6n%—15

6n% + 8 3'_‘(6n2+8)—3(2n2+5)‘_

m2+5 2n2 + 5 2n2+5

B -7

S |2n2 45

T T T 1T,

2n2+5 " 2n2 " n2 " n - N
Th li M — ]
U e 45
5. (10 marks) Use Definition to prove that
. n?+5
lim = +o0.
n—oo N+ H
Proof. Let M € R. By Arichimedean property, there is an N € N such that
M45<N.
It’s equivalent to N — 5 > M.
Let n € N such that n > N. So, n —5 > N — 5. Since 5 > —25, n?> + 5 < n? — 25. We obtain
2
n®+5 9 1 9 1 (n—>5)(n+5)
— 5) . > —25) . = =n—-5>N-5>M.
U S G n+5 nTe=
2
5
Hence, lim s ~+00. O
n—oo N+ H
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

6. (10 marks) Use definition to prove that

—— % is a Caucy sequence.
n?+1 v sed

1
Proof. Let ¢ > 0. By Arichimedean property, there is an N € N such that N < %
1 1 1 1
Let n,m € N such that n,m > N. Then — < — and — < —.
n_- N m -~ N

From 1 > 0, we have

n24+1>n2 and mZ2+1>m

So,
1 < 1 q 1 < 1
—— < = an —.
n2+1 " n? m24+1 - m?
It follows that
n m B n m
n2+1 m2+1| |n2+4+1 m2+1
n m
T n2  om?
1 1
Si -
n m
< 1+1
- N N
<§+£:€
2 2 ’

Thus, {n;:— 7 } is Cauchy.

O
7. (10 marks) Define a set
1
A= { 'n € N}

n
Show that 0 is a limit point of A.
Hint : Use Archimedean property.
Proof. Let € > 0. By Archimedean property, there is an n € N such that

1

—<e€

n
From 0 < % < €, we have

le(e and leA

Thus, [(—¢,0) U (0,e)]NA # @.
We conclude that 0 is a limit point of A. O
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L4 MAC3309 Math Analysis

8. (10 marks) Use definition to prove that

. 5%
m ———-: = 2.
x—=2 14+ 1
. 2e
Proof. Let € > 0. Choose § = min« 1, = (- Suppose that 0 < |z — 2| < 0.

Then 0 < |z — 2| < 1. We have

“l<z-2<1
l<z<3 — 2-1<20-1<6-1
1<a2?<9
2<2?4+1<10

It follows that

1 1 1
20 —1/<5 d —<——-<=
2e—1l<5 and g5 <o <3
So,
5z o| — 5oz —2(z*+1)|  |—(22% — bz +2)
22 +1 N 22 +1 N 22 +1
|22 =5z 42| |2z —1)(z — 2)|
x4l 2224 1)
o — 2] 20— 1]
= |T X $2+1
1 2¢ 5
§-5.- 2 <225 — ¢l
<0 b gsggTE
. 5%
Therefore, lim 2. ]

x%Ql‘Q—}—l:
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

9. (10 marks) Use definition prove that

. T
lim = +00.
z—=1-1—x

1 . .
Proof. Let M > 0. Choose § = Tk It is equivalent to
1
M=--1.
4]

Let £ € R such that —d < x —1 < 0. Then 0 < 1—x < . We obatin

1 >1
1—2" 6
Then
T
=14+ —->-14+-=M
11—z Tz +5
Thus, lim = 400 O
r—1- — T
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

10. (10 marks) Let {z,} and {y,} be sequences in real.
Assume that {z,} is bounded and y,, — 0 as n — oco. Prove that

TnYn — 0 as n — oo.

Proof. Assume that {z,} is bounded and y, — 0 as n — oo.
Then, there is a K > 0 such that

|x,| < K forallneN.

Let € > 0. There are N € N such that

n >N implies |y,| = |y, — 0| < %
Let n € N such that n > N. We obtain
|[Znyn = O = |znyn| = [zn] - |yn]
< K- % =e.
Thus, z,y, — 0 as n — oc. O
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