

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Final Examination (Set A) Semester 2/2024

Course ID	Course Name	Test Time	Full Scores
MAC3309	Mathematical	5 p.m 8 p.m.	100 marks
	Analysis	Fir 28 Mar. 2025	25%

Name	. ID	Section
------	------	---------

Direction

- 1. 10 questions of all 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Don't take text books and others come to the test room.
- 4. Cannot answer sheets out of test room.
- 5. Deliver to the staff if you make a mistake in the test room.

Your signature

Lecturer: Assistant Professor Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Total
Scores											



Some Definition to prove this examination.

1.
$$f$$
 is continuous at a $\iff \forall \varepsilon > 0 \; \exists \delta > 0, \; |x - a| < \delta \longrightarrow |f(x) - f(a)| < \varepsilon$

2.
$$f$$
 is uniformly continuous on E $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, a \in E, \ |x-a| < \delta \longrightarrow |f(x)-f(a)| < \varepsilon$

3.
$$f$$
 is differentiable at a $\iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

4.
$$f$$
 is increasing on E $\iff \forall x_1, x_2 \in E, x_1 < x_2 \longrightarrow f(x_1) < f(x_2)$

5.
$$f$$
 is decreasing on E $\iff \forall x_1, x_2 \in E, \ x_1 < x_2 \implies f(x_1) > f(x_2)$

6.
$$f$$
 is integrable on $[a, b]$ $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon}, \ U(f, P) - L(f, P) < \varepsilon$

7. Riemann sum converges to
$$I(f)$$
 $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon} \subseteq \{x_0, x_1, ..., x_n\} \longrightarrow \left| \sum_{i=1}^n f(t_i) \Delta x_i - I(f) \right| < \varepsilon$

8. Cauchy Criterion:
$$\sum_{k=1}^{\infty} a_k \text{ converges} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, m > n \ge N \longrightarrow \left| \sum_{k=n}^m a_k \right| < \varepsilon$$

1. (10 marks) Use definition to prove that

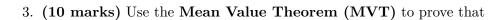
$$f(x) = (x^2 - 1) + (x - 1)^2$$

is continuous at x = 1.

2. (10 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Define

$$g(x) = x + f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .



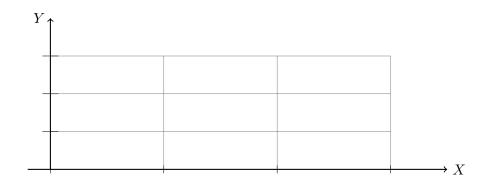
$$\frac{1}{x} \le \sqrt{x} \quad \text{ for all } \ x \ge 1.$$

- 4. (10 marks) Define $f(x) = x e^{-x}$ where $x \in \mathbb{R}$.
 - Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.
 - Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .
 - Q3 (3 marks) Compute $(f^{-1})'(-1)$.

5. (10 marks) Define

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 2 & \text{if } x \in (1,2) \\ 3 & \text{if } x = 1 \end{cases}$$

Draw the graph of f on [0,2] and use definition to show that f is integrable on [0,2].



6. (10 marks) Let $f(x) = (x^2 - 1) + (x - 1)^2$ where $x \in [0, 1]$ and

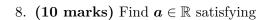
$$P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\} = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., 1 \right\}$$

be a partition of [0,1]. Find the **Riemann sum** of f and find I(f) on [0,1].

$$f(x) = \int_1^{-x} 2g(t^2) dt$$
 where $x \in \mathbb{R}$.

Show that
$$\int_{-1}^{0} f(x) dx + \int_{0}^{1} g(x) dx = 0.$$

Hint: Use integration by part to $\int_{-1}^{0} f(x) dx$ and change variable.



$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} \right] = \frac{5}{2}.$$

Hint: Use Telescoping and Geometric Series.

9. (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k} \right)^k \text{ converges or NOT.}$$

Verify your answer.

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^2} \right)$$

is conditionally convergent or NOT.

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Final Examination (Set B) Semester 2/2024

Course ID	Course Name	Test Time	Full Scores		
MAC3309	Mathematical	5 p.m 8 p.m.	100 marks		
	Analysis	Fir 28 Mar. 2025	25%		

Name	ID	Section

Direction

- 1. 10 questions of all 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Don't take text books and others come to the test room.
- 4. Cannot answer sheets out of test room.
- 5. Deliver to the staff if you make a mistake in the test room.

Your signature

Lecturer: Assistant Professor Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Total
Scores											

Some Definition to prove this examination.

1.
$$f$$
 is continuous at a $\iff \forall \varepsilon > 0 \; \exists \delta > 0, \; |x - a| < \delta \longrightarrow |f(x) - f(a)| < \varepsilon$

2.
$$f$$
 is uniformly continuous on E $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, a \in E, \ |x-a| < \delta \longrightarrow |f(x) - f(a)| < \varepsilon$

3.
$$f$$
 is differentiable at a $\iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

4.
$$f$$
 is increasing on E $\iff \forall x_1, x_2 \in E, x_1 < x_2 \longrightarrow f(x_1) < f(x_2)$

5.
$$f$$
 is decreasing on E $\iff \forall x_1, x_2 \in E, \ x_1 < x_2 \implies f(x_1) > f(x_2)$

6.
$$f$$
 is integrable on $[a, b]$ $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon}, \ U(f, P) - L(f, P) < \varepsilon$

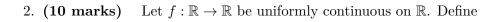
7. Riemann sum converges to
$$I(f)$$
 $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon} \subseteq \{x_0, x_1, ..., x_n\} \Longrightarrow \left| \sum_{i=1}^n f(t_i) \Delta x_i - I(f) \right| < \varepsilon$

8. Cauchy Criterion:
$$\sum_{k=1}^{\infty} a_k \text{ converges} \quad \Longleftrightarrow \quad \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, m > n \geq N \longrightarrow \left| \sum_{k=n}^m a_k \right| < \varepsilon$$

1. (10 marks) Use definition to prove that

$$f(x) = (x^2 - 1) + (x + 1)^2$$

is continuous at x = -1.



$$g(x) = x - f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

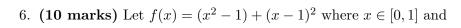
$$\frac{1}{x^2} \le \sqrt{x} \quad \text{ for all } \ x \ge 1.$$

- 4. (10 marks) Define $f(x) = x e^{-2x}$ where $x \in \mathbb{R}$.
 - Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.
 - Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .
 - Q3 (3 marks) Compute $(f^{-1})'(-1)$.

5. (10 marks) Define

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 2 & \text{if } x \in (1,2) \\ 3 & \text{if } x = 1 \end{cases}$$

Draw the graph of f on [0,2] and use definition to show that f is integrable on [0,2].



$$P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\} = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., 1 \right\}$$

be a partition of [0,1]. Find the **Riemann sum** of f and find I(f) on [0,1].

$$f(x) = \int_1^{-x} 2g(t^2) dt$$
 where $x \in \mathbb{R}$.

Show that
$$\int_{-1}^{0} f(x) dx + \int_{0}^{1} g(x) dx = 0.$$

Hint: Use integration by part to $\int_{-1}^{0} f(x) dx$ and change variable.

8. (10 marks) Find $a \in \mathbb{R}$ satisfying

$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} \right] = \frac{10}{3}.$$

Hint: Use Telescoping and Geometric Series.

9. (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^2} \right)^k \text{ converges or NOT.}$$

Verify your answer.

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^3} \right)$$

is conditionally convergent or NOT.

Suan Sunandha Rajabhat University Faculty of Education, Division of Mathematics Final Examination (Set C) Semester 2/2024

Course ID	Course Name	Test Time	Full Scores
MAC3309	Mathematical	5 p.m 8 p.m.	100 marks
	Analysis	Fir 28 Mar. 2025	25%

Name	ID	Section

Direction

- 1. 10 questions of all 12 pages.
- 2. Write obviously your name, id and section all pages.
- 3. Don't take text books and others come to the test room.
- 4. Cannot answer sheets out of test room.
- 5. Deliver to the staff if you make a mistake in the test room.

Your signature

Lecturer: Assistant Professor Thanatyod Jampawai, Ph.D.

No.	1	2	3	4	5	6	7	8	9	10	Total
Scores											

Some Definition to prove this examination.

1.
$$f$$
 is continuous at a $\iff \forall \varepsilon > 0 \; \exists \delta > 0, \; |x - a| < \delta \longrightarrow |f(x) - f(a)| < \varepsilon$

2.
$$f$$
 is uniformly continuous on E $\iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, a \in E, \ |x-a| < \delta \longrightarrow |f(x)-f(a)| < \varepsilon$

3.
$$f$$
 is differentiable at a $\iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

4.
$$f$$
 is increasing on E $\iff \forall x_1, x_2 \in E, \ x_1 < x_2 \implies f(x_1) < f(x_2)$

5.
$$f$$
 is decreasing on E $\iff \forall x_1, x_2 \in E, \ x_1 < x_2 \implies f(x_1) > f(x_2)$

6.
$$f$$
 is integrable on $[a, b]$ $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon}, \ U(f, P) - L(f, P) < \varepsilon$

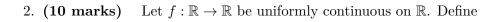
7. Riemann sum converges to
$$I(f)$$
 $\iff \forall \varepsilon > 0 \ \exists P_{\varepsilon} \subseteq \{x_0, x_1, ..., x_n\} \longrightarrow \left| \sum_{i=1}^n f(t_i) \Delta x_i - I(f) \right| < \varepsilon$

8. Cauchy Criterion:
$$\sum_{k=1}^{\infty} a_k \text{ converges} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, m > n \ge N \longrightarrow \left| \sum_{k=n}^m a_k \right| < \varepsilon$$

1. (10 marks) Use definition to prove that

$$f(x) = 2(x^2 - 1) + 2(x - 1)^2$$

is continuous at x = 1.



$$g(x) = 2x + f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

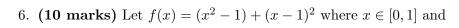
$$\frac{1}{x^3} \le \sqrt{x} \quad \text{ for all } \ x \ge 1.$$

- 4. (10 marks) Define $f(x) = 2x e^{-x}$ where $x \in \mathbb{R}$.
 - Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.
 - Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .
 - Q3 (3 marks) Compute $(f^{-1})'(-1)$.

5. (10 marks) Define

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 2 & \text{if } x \in (1,2) \\ 3 & \text{if } x = 1 \end{cases}$$

Draw the graph of f on [0,2] and use definition to show that f is integrable on [0,2].



$$P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\} = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., 1 \right\}$$

be a partition of [0,1]. Find the **Riemann sum** of f and find I(f) on [0,1].

$$f(x) = \int_1^{-x} 2g(t^2) dt$$
 where $x \in \mathbb{R}$.

Show that
$$\int_{-1}^{0} f(x) dx + \int_{0}^{1} g(x) dx = 0.$$

Hint: Use integration by part to $\int_{-1}^{0} f(x) dx$ and change variable.

8. (10 marks) Find $a \in \mathbb{R}$ satisfying

$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} \right] = \frac{17}{4}.$$

Hint: Use Telescoping and Geometric Series.

9. (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^3} \right)^k \text{ converges or NOT.}$$

Verify your answer.

10. (10 marks) Determine whether

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^4} \right)$$

is conditionally convergent or NOT.

Solution Final Exam. 2/2024 MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. A (10 marks) Use definition to prove that

$$f(x) = (x^2 - 1) + (x - 1)^2$$

is continuous at x = 1.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{4}\}$. Let $x \in \mathbb{R}$ such that $|x - 1| < \delta$. Then |x - 1| < 1.

So,
$$|x| - |1| \le |x - 1| < 1$$
. We obtain $|x| \le 2$.

By triangle inequility, it follows that

$$|f(x) - f(1)| = |(x^2 - 1) + (x - 1)^2 - 0|$$

$$= |(x^2 - 1) + (x^2 - 2x + 1)| = |2x^2 - 2x|$$

$$= |2x(x - 1)| = 2|x||x - 1|$$

$$< 2(2)\delta$$

$$= 4\delta < 4 \cdot \frac{\varepsilon}{4} = \varepsilon.$$

Therefore, f is continuous at x = 1.

1. B (10 marks) Use definition to prove that

$$f(x) = (x^2 - 1) + (x + 1)^2$$

is continuous at x = -1.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{4}\}$. Let $x \in \mathbb{R}$ such that $|x+1| < \delta$. Then |x+1| < 1.

So,
$$|x| - |1| \le |x + 1| < 1$$
. We obtain $|x| \le 2$.

By triangle inequility, it follows that

$$|f(x) - f(-1)| = |(x^2 - 1) + (x + 1)^2 - 0|$$

$$= |(x^2 - 1) + (x^2 + 2x + 1)| = |2x^2 + 2x|$$

$$= |2x(x + 1)| = 2|x||x + 1|$$

$$< 2(2)\delta$$

$$= 4\delta < 4 \cdot \frac{\varepsilon}{4} = \varepsilon.$$

Therefore, f is continuous at x = -1.

1. C (10 marks) Use definition to prove that

$$f(x) = 2(x^2 - 1) + 2(x - 1)^2$$

is continuous at x = 1.

Proof. Let $\varepsilon > 0$. Choose $\delta = \min\{1, \frac{\varepsilon}{8}\}$. Let $x \in \mathbb{R}$ such that $|x - 1| < \delta$. Then |x - 1| < 1.

So,
$$|x| - |1| \le |x - 1| < 1$$
. We obtain $|x| \le 2$.

By triangle inequility, it follows that

$$|f(x) - f(1)| = |2(x^2 - 1) + 2(x - 1)^2 - 0|$$

$$= |2(x^2 - 1) + 2(x^2 - 2x + 1)| = |4x^2 - 4x|$$

$$= |4x(x + 1)| = 4|x||x - 1|$$

$$< 4(2)\delta$$

$$= 8\delta < 8 \cdot \frac{\varepsilon}{8} = \varepsilon.$$

Therefore, f is continuous at x = -1.

2. A (10 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Define

$$g(x) = x + f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .

Proof. Assume that f be uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$. There is an $\delta_0 > 0$ such that

$$|x-a| < \delta_0 \text{ for all } x, a \in \mathbb{R} \quad \text{implies} \quad |f(x)-f(a)| < \frac{\varepsilon}{2}.$$

Choose $\delta = \min \left\{ \delta_0, \frac{\varepsilon}{2} \right\}$. Let $x, a \in \mathbb{R}$ such that $|x - a| < \delta$. So, $|x - a| < \delta_0$ and $|x - a| < \frac{\varepsilon}{2}$ Apply the triangle inequality and assumption, it implies that

$$\begin{aligned} |g(x) - g(a)| &= |x + f(x) - (a + f(a))| \\ &= |f(x) - f(a) + x - a| \\ &= |f(x) - f(a)| + |x - a| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Thus, g is uniformly continuous on \mathbb{R} .

2. B (10 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Define

$$g(x) = x - f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .

Proof. Assume that f be uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$. There is an $\delta_0 > 0$ such that

$$|x-a| < \delta_0 \text{ for all } x, a \in \mathbb{R} \quad \text{implies} \quad |f(x)-f(a)| < \frac{\varepsilon}{2}.$$

Choose $\delta = \min\left\{\delta_0, \frac{\varepsilon}{2}\right\}$. Let $x, a \in \mathbb{R}$ such that $|x - a| < \delta$. So, $|x - a| < \delta_0$ and $|x - a| < \frac{\varepsilon}{2}$ Apply the triangle inequality and assumption, it implies that

$$\begin{split} |g(x) - g(a)| &= |x - f(x) - (a - f(a))| \\ &= |- (f(x) - f(a)) + x - a| \\ &\leq |- (f(x) - f(a))| + |x - a| \\ &= |f(x) - f(a)| + |x - a| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Thus, g is uniformly continuous on \mathbb{R} .

2. C (10 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Define

$$g(x) = 2x + f(x)$$
 where $x \in \mathbb{R}$.

Prove that g is uniformly continuous on \mathbb{R} .

Proof. Assume that f be uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$. There is an $\delta_0 > 0$ such that

$$|x-a| < \delta_0 \text{ for all } x, a \in \mathbb{R} \quad \text{implies} \quad |f(x)-f(a)| < \frac{\varepsilon}{2}.$$

Choose $\delta = \min\left\{\delta_0, \frac{\varepsilon}{2}\right\}$. Let $x, a \in \mathbb{R}$ such that $|x - a| < \delta$. So, $|x - a| < \delta_0$ and $|x - a| < \frac{\varepsilon}{4}$ Apply the triangle inequality and assumption, it implies that

$$\begin{aligned} |g(x) - g(a)| &= |2x + f(x) - (2a + f(a))| \\ &= |f(x) - f(a) + 2(x - a)| \\ &= |f(x) - f(a)| + 2|x - a| \\ &< \frac{\varepsilon}{2} + 2 \cdot \frac{\varepsilon}{4} = \varepsilon. \end{aligned}$$

Thus, g is uniformly continuous on \mathbb{R} .

3. A (10 marks) Use the Mean Value Theorem (MVT) to prove that

$$\frac{1}{x} \le \sqrt{x}$$
 for all $x \ge 1$.

Proof. Let a > 1 and define

$$f(x) = \frac{1}{x} - \sqrt{x}$$
 where $x \in [1, a]$.

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

$$f(1) = 0$$

$$f'(x) = -\frac{1}{x^2} - \frac{1}{2\sqrt{x}}$$

By the Mean Value Theorem, there is a $c \in (1, a)$ such that

$$f(a) - f(1) = f'(c)(a-1)$$
$$\frac{1}{a} - \sqrt{a} - 0 = \left(-\frac{1}{c^2} - \frac{1}{2\sqrt{c}}\right)(a-1)$$

Obviously, we see that $-\frac{1}{c^2} - \frac{1}{2\sqrt{c}} < 0$ for $c \in (1, a)$ Since a > 1, a - 1 > 0. It implies that

$$\frac{1}{a} - \sqrt{a} = \left(-\frac{1}{c^2} - \frac{1}{2\sqrt{c}}\right)(a-1) < 0$$

We conclude that $\frac{1}{x} \le \sqrt{x}$ for all $x \ge 1$.

3. B (10 marks) Use the Mean Value Theorem (MVT) to prove that

$$\frac{1}{x^2} \le \sqrt{x}$$
 for all $x \ge 1$.

Proof. Let a > 1 and define

$$f(x) = \frac{1}{x^2} - \sqrt{x}$$
 where $x \in [1, a]$.

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

$$f(1) = 0$$

$$f'(x) = -\frac{2}{x^3} - \frac{1}{2\sqrt{x}}$$

By the Mean Value Theorem, there is a $c \in (1, a)$ such that

$$f(a) - f(1) = f'(c)(a-1)$$
$$\frac{1}{a^2} - \sqrt{a} - 0 = \left(-\frac{2}{c^3} - \frac{1}{2\sqrt{c}}\right)(a-1)$$

Obviously, we see that $-\frac{2}{c^3} - \frac{1}{2\sqrt{c}} < 0$ for $c \in (1, a)$ Since a > 1, a - 1 > 0. It implies that

$$\frac{1}{a} - \sqrt{a} = \left(-\frac{2}{c^3} - \frac{1}{2\sqrt{c}}\right)(a-1) < 0$$

We conclude that $\frac{1}{x^2} \le \sqrt{x}$ for all $x \ge 1$.

3. C (10 marks) Use the Mean Value Theorem (MVT) to prove that

$$\frac{1}{x^3} \le \sqrt{x} \quad \text{ for all } \ x \ge 1.$$

Proof. Let a > 1 and define

$$f(x) = \frac{1}{x^3} - \sqrt{x}$$
 where $x \in [1, a]$.

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

$$f(1) = 0$$

$$f'(x) = -\frac{3}{x^4} - \frac{1}{2\sqrt{x}}$$

By the Mean Value Theorem, there is a $c \in (1, a)$ such that

$$f(a) - f(1) = f'(c)(a - 1)$$
$$\frac{1}{a^2} - \sqrt{a} - 0 = \left(-\frac{3}{c^4} - \frac{1}{2\sqrt{c}}\right)(a - 1)$$

Obviously, we see that $-\frac{3}{c^4}-\frac{1}{2\sqrt{c}}<0$ for $c\in(1,a)$ Since $a>1,\ a-1>0.$ It implies that

$$\frac{1}{a} - \sqrt{a} = \left(-\frac{3}{c^4} - \frac{1}{2\sqrt{c}}\right)(a-1) < 0$$

We conclude that $\frac{1}{x^3} \le \sqrt{x}$ for all $x \ge 1$.

Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.

Proof. Let $x, y \in \mathbb{R}$ and $x \neq y$. WLOG x < y. So, -x > -y We obtain

$$e^{-x} > e^{-y}.$$

Thus, $-e^{-x} < -e^{-y}$. It follows that

$$x - e^{-x} < y - e^{-y}$$
$$f(x) < f(y)$$

So, $f(x) \neq f(y)$. Therefore, f is injective on \mathbb{R} .

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .

Solution. Since f is injective, f^{-1} exists. It is clear that f is continous on \mathbb{R} . By IFT, we conclude that f^{-1} differentiable on \mathbb{R} .

Q3 (3 marks) Compute $(f^{-1})'(1)$.

Solution. We see that $f'(x) = 1 + e^{-x}$ and

$$f(0) = 0 - e^0 = -1.$$

So $f^{-1}(-1) = 0$. By IFT,

$$(f^{-1})'(-1) = \frac{1}{f'(f^{-1}(-1))}$$

$$= \frac{1}{f'(0)}$$

$$= \frac{1}{1+e^0}$$

$$= \frac{1}{1+1}$$

$$= \frac{1}{2} \#$$

- 4. B(10 marks) Define $f(x) = x e^{-2x}$ where $x \in \mathbb{R}$.
 - Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.

Proof. Let $x, y \in \mathbb{R}$ and $x \neq y$. WLOG x < y. So, -2x > -2y We obtain

$$e^{-2x} > e^{-2y}$$
.

Thus, $-e^{-2x} < -e^{-2y}$. It follows that

$$x - e^{-2x} < y - e^{-2y}$$
$$f(x) < f(y)$$

So, $f(x) \neq f(y)$. Therefore, f is injective on \mathbb{R} .

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .

Solution. Since f is injective, f^{-1} exists. It is clear that f is continous on \mathbb{R} . By IFT, we conclude that f^{-1} differentiable on \mathbb{R} .

Q3 (3 marks) Compute $(f^{-1})'(1)$.

Solution. We see that $f'(x) = 1 + 2e^{-2x}$ and

$$f(0) = 0 - e^0 = -1.$$

So $f^{-1}(-1) = 0$. By IFT,

$$(f^{-1})'(-1) = \frac{1}{f'(f^{-1}(-1))}$$

$$= \frac{1}{f'(0)}$$

$$= \frac{1}{1+2e^0}$$

$$= \frac{1}{1+2}$$

$$= \frac{1}{3} \#$$

- 4. C(10 marks) Define $f(x) = 2x e^{-x}$ where $x \in \mathbb{R}$.
 - Q1 (5 marks) Show that f is injective (one-to-one) on $x \in \mathbb{R}$.

Proof. Let $x, y \in \mathbb{R}$ and $x \neq y$. WLOG x < y. So, 2x < 2y and -x > -y We obtain

$$e^{-x} > e^{-y}.$$

Thus, $-e^{-x} < -e^{-y}$. It follows that

$$2x - e^{-x} < 2y - e^{-y}$$
$$f(x) < f(y)$$

So, $f(x) \neq f(y)$. Therefore, f is injective on \mathbb{R} .

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f^{-1} differentiable on \mathbb{R} .

Solution. Since f is injective, f^{-1} exists. It is clear that f is continous on \mathbb{R} . By IFT, we conclude that f^{-1} differentiable on \mathbb{R} .

Q3 (3 marks) Compute $(f^{-1})'(1)$.

Solution. We see that $f'(x) = 2 + e^{-x}$ and

$$f(0) = 0 - e^0 = -1.$$

So $f^{-1}(-1) = 0$. By IFT,

$$(f^{-1})'(-1) = \frac{1}{f'(f^{-1}(-1))}$$

$$= \frac{1}{f'(0)}$$

$$= \frac{1}{2+e^0}$$

$$= \frac{1}{2+1}$$

$$= \frac{1}{3} \#$$

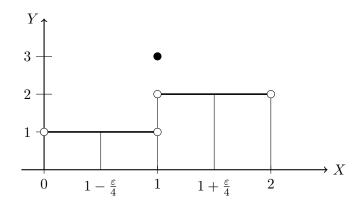
5. A,B,C (10 marks) Define

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 2 & \text{if } x \in (1,2) \\ 3 & \text{if } x = 1 \end{cases}$$

Draw the graph of f on [0,2] and use definition to show that f is integrable on [0,2].

Proof. Let $\varepsilon > 0$.

Case $\varepsilon < 4$. So, $0 < \frac{\varepsilon}{4} < 1$. Choose $P = \left\{0, 1 - \frac{\varepsilon}{4}, 1, 1 + \frac{\varepsilon}{4}, 2\right\}$.



We obtain

$$\begin{split} U(f,P) &= 1 \left(1 - \frac{\varepsilon}{4} \right) + 3 \left(\frac{\varepsilon}{4} \right) + 3 \left(\frac{\varepsilon}{4} \right) + 2 \left(1 - \frac{\varepsilon}{4} \right) \\ L(f,P) &= 1 \left(1 - \frac{\varepsilon}{4} \right) + 1 \left(\frac{\varepsilon}{4} \right) + 2 \left(\frac{\varepsilon}{4} \right) + 2 \left(1 - \frac{\varepsilon}{4} \right) \\ U(f,P) - L(f,P) &= 2 \left(\frac{\varepsilon}{4} \right) + 1 \left(\frac{\varepsilon}{4} \right) = \frac{3}{4} \cdot \varepsilon < 1 \cdot \varepsilon = \varepsilon. \end{split}$$

Case $\varepsilon \geq 4$. Choose $P = \{0, 1, 2\}$. Then

$$U(f,P) = 3(1-0) + 3(2-1)$$

$$L(f,P) = 1(1-0) + 2(2-1)$$

$$U(f,P) - L(f,P) = 2 + 1 = 3 < 4 \le \varepsilon.$$

Thus, f is integrable on [0, 2].

6. A,B,C (10 marks) Let $f(x) = (x^2 - 1) + (x - 1)^2$ where $x \in [0, 1]$ and

$$P = \left\{ \frac{j}{n} : j = 0, 1, ..., n \right\} = \left\{ 0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, ..., 1 \right\}$$

be a partition of [0,1]. Find the **Riemann sum** of f and find I(f) on [0,1].

Solution. Choose **The Right End Point**, i.e., $f(t_j) = f(\frac{j}{n})$ on the subinterval $[x_{j-1}, x_j]$ and

$$\Delta x_j = \frac{j}{n} - \frac{(j-1)}{n} = \frac{1}{n}$$
 for all $j = 1, 2, 3, ..., n$.

From $f(x) = (x^2 - 1) + (x - 1)^2 = 2x^2 - 2x$. We obtain

$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} f\left(\frac{j}{n}\right) \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} \left[2\left(\frac{j}{n}\right)^2 - 2\left(\frac{j}{n}\right) \right]$$

$$= \frac{1}{n} \left[\sum_{j=1}^{n} \frac{2j^2}{n^2} - \sum_{j=1}^{n} \frac{2j}{n} \right]$$

$$= \frac{1}{n} \left[\frac{2}{n^2} \sum_{j=1}^{n} j^2 - \frac{2}{n} \sum_{j=1}^{n} j \right]$$

$$= \frac{1}{n} \left[\frac{2}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{2}{n} \cdot \frac{n(n+1)}{2} \right]$$

$$= \frac{(n+1)(2n+1)}{3n^2} - \frac{n+1}{n}$$

Thus,

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) \Delta x_j = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{3n^2} - \frac{n+1}{n} = \frac{1}{3} - 1 = -\frac{1}{3} \quad \#$$

7. A,B,C (10 marks) Let g be differentiable and integrable on \mathbb{R} . Define

$$f(x) = \int_{1}^{-x} 2g(t^2) dt$$
 where $x \in \mathbb{R}$.

Show that
$$\int_{-1}^{0} f(x) dx + \int_{0}^{1} g(x) dx = 0.$$

Hint: Use integration by part to $\int_{-1}^{0} f(x) dx$ and change variable.

Solution. By the First Fundamental Theorem of Calculus and Chain rule,

$$f'(x) = 2g((-x)^2) \cdot (-x)' = 2g(x^2) \cdot (-1) = -2g(x^2).$$

We have

$$f(-1) = \int_{1}^{1} 2g(t^{2}) dt = 0$$

By integration by part, we obtain

$$\int_{-1}^{0} f(x) dx = \int_{-1}^{0} x' f(x) dx = [xf(x)]_{-1}^{0} - \int_{-1}^{0} x f'(x) dx$$

$$= 0f(0) - (-1)f(-1) - \int_{-1}^{0} x \cdot (-2)g(x^{2}) dx$$

$$= 0 - 0 + \int_{-1}^{0} 2x \cdot g(x^{2}) dx$$

$$= \int_{-1}^{0} g(x^{2}) \cdot (x^{2})' dx$$

$$= \int_{-1}^{0} g(\phi(x))\phi'(x) dx$$

$$= \int_{\phi(-1)}^{\phi(0)} g(t) dt$$

$$= \int_{1}^{0} g(t) dt$$

$$= -\int_{0}^{1} g(t) dt$$

$$= -\int_{0}^{1} g(t) dx$$

Change of Variable $\phi(x) = x^2$

Thus, $\int_{-1}^{0} f(x) dx + \int_{0}^{1} g(x) dx = 0.$

8. A (10 marks) Find $a \in \mathbb{R}$ satisfying

$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} \right] = \frac{5}{2}.$$

Hint: Use Telescoping and Geometric Series.

Solution. We consider

$$\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} = \left(\frac{a}{a+1}\right)^k + \frac{ak}{a^{k+1}} - \frac{k+1}{a^{k+1}}$$
$$= \left(\frac{a}{a+1}\right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}}\right).$$

So, the above sequence consist of a geometric and telescoping sequences. It follows that

$$\begin{split} \frac{5}{2} &= \sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} \right] = \sum_{k=1}^{\infty} \left[\left(\frac{a}{a+1} \right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right) \right] \\ &= \sum_{k=1}^{\infty} \left(\frac{a}{a+1} \right)^k + \sum_{k=1}^{\infty} \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right). \\ &= \frac{\frac{a}{a+1}}{1 - \frac{a}{a+1}} + \left(\frac{1}{a} - \lim_{k \to \infty} \frac{1}{(k+1)a^{k+1}} \right) & \text{if } a > 1 \\ &= a + \left(\frac{1}{a} - 0 \right) = \frac{a^2 + 1}{a} \end{split}$$

We obtain $5a = 2(a^2 + 1)$ or $(2a - 1)(a - 2) = 2a^2 - 5a + 2 = 0$. Then, $a = 2, \frac{1}{2}$. But a > 1. Thus, a = 2

8. B (10 marks) Find $a \in \mathbb{R}$ satisfying

$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} \right] = \frac{10}{3}.$$

Hint: Use Telescoping and Geometric Series.

Solution. We consider

$$\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} = \left(\frac{a}{a+1}\right)^k + \frac{ak}{a^{k+1}} - \frac{k+1}{a^{k+1}}$$
$$= \left(\frac{a}{a+1}\right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}}\right).$$

So, the above sequence consist of a geometric and telescoping sequences. It follows that

$$\begin{split} \frac{10}{3} &= \sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} \right] = \sum_{k=1}^{\infty} \left[\left(\frac{a}{a+1} \right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right) \right] \\ &= \sum_{k=1}^{\infty} \left(\frac{a}{a+1} \right)^k + \sum_{k=1}^{\infty} \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right). \\ &= \frac{\frac{a}{a+1}}{1 - \frac{a}{a+1}} + \left(\frac{1}{a} - \lim_{k \to \infty} \frac{1}{(k+1)a^{k+1}} \right) & \text{if } a > 1 \\ &= a + \left(\frac{1}{a} - 0 \right) = \frac{a^2 + 1}{a} \end{split}$$

We obtain $10a = 3(a^2 + 1)$ or $(3a - 1)(a - 3) = 3a^2 - 10a + 3 = 0$. Then, $a = 3, \frac{1}{3}$. But a > 1. Thus, a = 3

8. C (10 marks) Find $a \in \mathbb{R}$ satisfying

$$\sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak-k-1}{a^{k+1}} \right] = \frac{17}{4}.$$

Hint: Use Telescoping and Geometric Series.

Solution. We consider

$$\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} = \left(\frac{a}{a+1}\right)^k + \frac{ak}{a^{k+1}} - \frac{k+1}{a^{k+1}}$$
$$= \left(\frac{a}{a+1}\right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}}\right).$$

So, the above sequence consist of a geometric and telescoping sequences. It follows that

$$\frac{17}{4} = \sum_{k=1}^{\infty} \left[\frac{a^k}{(a+1)^k} + \frac{ak - k - 1}{a^{k+1}} \right] = \sum_{k=1}^{\infty} \left[\left(\frac{a}{a+1} \right)^k + \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right) \right] \\
= \sum_{k=1}^{\infty} \left(\frac{a}{a+1} \right)^k + \sum_{k=1}^{\infty} \left(\frac{k}{a^k} - \frac{k+1}{a^{k+1}} \right) . \\
= \frac{\frac{a}{a+1}}{1 - \frac{a}{a+1}} + \left(\frac{1}{a} - \lim_{k \to \infty} \frac{1}{(k+1)a^{k+1}} \right) \quad \text{if } a > 1 \\
= a + \left(\frac{1}{a} - 0 \right) = \frac{a^2 + 1}{a}$$

We obtain $17a = 4(a^2 + 1)$ or $(4a - 1)(a - 4) = 4a^2 - 17a + 4 = 0$. Then, $a = 4, \frac{1}{4}$. But a > 1. Thus, a = 4

9. A (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k} \right)^k$$
 converges or NOT.

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

$$r = \limsup_{k \to \infty} \left| \left(\frac{a + (-1)^k}{k} \right)^k \right|^{\frac{1}{k}}$$

$$= \limsup_{k \to \infty} \left| \frac{a + (-1)^k}{k} \right|$$

$$= \lim_{k \to \infty} \sup \left\{ \frac{|a - 1|}{k}, \frac{|a + 1|}{k} \right\}$$

Whatever we obtain $\sup\left\{\frac{|a-1|}{k},\frac{|a+1|}{k}\right\} = \frac{|a-1|}{k}$ or $\frac{|a+1|}{k}$. For any $a \in \mathbb{R}$, it's clear that

$$r = \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k}, \frac{|a+1|}{k} \right\} = \lim_{n \to \infty} \frac{|a-1|}{k} = 0 < 1$$

$$r = \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k}, \frac{|a+1|}{k} \right\} = \lim_{n \to \infty} \frac{|a+1|}{k} = 0 < 1$$

We conclude that $\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k} \right)^k$ converges absolutely for all $a \in \mathbb{R}$.

9. B (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^2} \right)^k$$
 converges or NOT.

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

$$r = \limsup_{k \to \infty} \left| \left(\frac{a + (-1)^k}{k^2} \right)^k \right|^{\frac{1}{k}}$$

$$= \limsup_{k \to \infty} \left| \frac{a + (-1)^k}{k^2} \right|$$

$$= \lim_{n \to \infty} \sup \left\{ \frac{|a - 1|}{k^2}, \frac{|a + 1|}{k^2} \right\}$$

Whatever we obtain $\sup\left\{\frac{|a-1|}{k^2},\frac{|a+1|}{k^2}\right\} = \frac{|a-1|}{k^2}$ or $\frac{|a+1|}{k^2}$. For any $a \in \mathbb{R}$, it's clear that

$$\begin{split} r &= \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k^2}, \frac{|a+1|}{k^2} \right\} = \lim_{n \to \infty} \frac{|a-1|}{k^2} = 0 < 1 \\ r &= \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k^2}, \frac{|a+1|}{k^2} \right\} = \lim_{n \to \infty} \frac{|a+1|}{k^2} = 0 < 1 \end{split}$$

We conclude that $\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^2} \right)^k$ converges absolutely for all $a \in \mathbb{R}$.

9. C (10 marks) Let $a \in \mathbb{R}$. Determine whether

$$\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^3} \right)^k \text{ converges or NOT.}$$

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

$$r = \limsup_{k \to \infty} \left| \left(\frac{a + (-1)^k}{k^3} \right)^k \right|^{\frac{1}{k}}$$
$$= \limsup_{k \to \infty} \left| \frac{a + (-1)^k}{k^3} \right|$$
$$= \lim_{n \to \infty} \sup \left\{ \frac{|a - 1|}{k^3}, \frac{|a + 1|}{k^3} \right\}$$

Whatever we obtain $\sup\left\{\frac{|a-1|}{k^3},\frac{|a+1|}{k^3}\right\} = \frac{|a-1|}{k^3}$ or $\frac{|a+1|}{k^3}$. For any $a \in \mathbb{R}$, it's clear that

$$\begin{split} r &= \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k^3}, \frac{|a+1|}{k^3} \right\} = \lim_{n \to \infty} \frac{|a-1|}{k^3} = 0 < 1 \\ r &= \lim_{n \to \infty} \sup \left\{ \frac{|a-1|}{k^3}, \frac{|a+1|}{k^3} \right\} = \lim_{n \to \infty} \frac{|a+1|}{k^3} = 0 < 1 \end{split}$$

We conclude that $\sum_{k=1}^{\infty} \left(\frac{a + (-1)^k}{k^3} \right)^k$ converges absolutely for all $a \in \mathbb{R}$.

10. A (10 marks) Determine whether

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^2} \right)$$

is conditionally convergent or NOT.

Solution. We consider

$$\sum_{k=1}^{\infty} \left| (-1)^k \ln \left(1 + \frac{1}{k^2} \right) \right| = \sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^2} \right).$$

Use the limit comparison test by $b_k = \frac{1}{k^2}$,

$$\lim_{k \to \infty} \frac{\ln\left(1 + \frac{1}{k^2}\right)}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{\frac{1}{1 + \frac{1}{k^2}} \cdot \left(-\frac{2}{k^3}\right)}{-\frac{2}{k^3}} = \lim_{k \to \infty} \left(\frac{1}{1 + \frac{1}{k^2}}\right) = 1 > 0$$

Since $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k^2}$ converges (p=2), by the Limit Comparision Test, it implies that

$$\sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^2} \right) \quad \text{converges.}$$

Thus,

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^2}\right)$$
 is absolutely convergent.

Therefore, we conclude that

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^2}\right)$$
 is not conditionally convergent.

10. B (10 marks) Determine whether

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^3}\right)$$

is conditionally convergent or NOT.

Solution. We consider

$$\sum_{k=1}^{\infty} \left| (-1)^k \ln \left(1 + \frac{1}{k^3} \right) \right| = \sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^3} \right).$$

Use the limit comparison test by $b_k = \frac{1}{k^3}$,

$$\lim_{k \to \infty} \frac{\ln\left(1 + \frac{1}{k^3}\right)}{\frac{1}{k^3}} = \lim_{k \to \infty} \frac{\frac{1}{1 + \frac{1}{k^3}} \cdot \left(-\frac{3}{k^4}\right)}{-\frac{3}{k^4}} = \lim_{k \to \infty} \left(\frac{1}{1 + \frac{1}{k^3}}\right) = 1 > 0$$

Since $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k^3}$ converges (p=3), by the Limit Comparision Test, it implies that

$$\sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^3} \right) \quad \text{converges.}$$

Thus,

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^3}\right)$$
 is absolutely convergent.

Therefore, we conclude that

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^3}\right)$$
 is not conditionally convergent.

10. C (10 marks) Determine whether

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^4}\right)$$

is conditionally convergent or NOT.

Solution. We consider

$$\sum_{k=1}^{\infty} \left| (-1)^k \ln \left(1 + \frac{1}{k^4} \right) \right| = \sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^4} \right).$$

Use the limit comparison test by $b_k = \frac{1}{k^4}$,

$$\lim_{k \to \infty} \frac{\ln\left(1 + \frac{1}{k^4}\right)}{\frac{1}{k^4}} = \lim_{k \to \infty} \frac{\frac{1}{1 + \frac{1}{k^4}} \cdot \left(-\frac{4}{k^5}\right)}{-\frac{4}{k^5}} = \lim_{k \to \infty} \left(\frac{1}{1 + \frac{1}{k^4}}\right) = 1 > 0$$

Since $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k^4}$ converges (p=4), by the Limit Comparision Test, it implies that

$$\sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k^4} \right) \quad \text{converges.}$$

Thus,

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^4}\right)$$
 is absolutely convergent.

Therefore, we conclude that

$$\sum_{k=1}^{\infty} (-1)^k \ln \left(1 + \frac{1}{k^4}\right)$$
 is not conditionally convergent.