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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

Some Definition to prove this examination.

1. f is continuous at a — Ve>030>0, |[x—a|<d— |f(x)— fla)] <€
2. f is uniformly continuous on E < Ve>030>0Vz,a€FE, [x—a|<d—|f(x)— fla)|<e
3. f is differentiable at a <~ lim M exists
z—a T —a
4. f is increasing on FE — Vi, 22 € E, 1 <xz2 — f(x1) < f(22)
5. f is decreasing on E <~ Vr,20 €E, 21 <xzy — f(z1) > f(a2)
6. f is integrable on [a, ] <— Ve>03P, U(f,P)—L(f,P)<e
7.  Riemann sum converges to I(f) — Ve>03FP. C{xg,x1,...., Tn} — Zf(tj)ij —I(f)| <e
i=1

m
D> a

k=n

oo
8. Cauchy Criterion: Zak converges <= Ve>0dNeNm>n>N —
k=1

<é€
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

1. (10 marks) Use definition to prove that
fl@)= (2= 1)+ (z — 1)

is continuous at x = 1.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. (10 marks) Let f: R — R be uniformly continuous on R. Define
g(x) =z + f(x) wherez € R.

Prove that g is uniformly continuous on R.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1
~ <z forall z>1.
x
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

4. (10 marks) Define f(z) =z —e* where z € R.

Q1 (5 marks) Show that f is injective (one-to-one) on z € R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~!
differentiable on R.

Q3 (3 marks) Compute (f~1)/(—1).
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

5. (10 marks) Define
1 ifxze(0,1)
flx)=4q2 ifze(l,2)
3 ifzx=1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Y
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

6. (10 marks) Let f(z) = (2% — 1) + (x — 1)? where z € [0, 1] and

' 123
P= {j:j:O,l,...,n}: {0,,,,...,1}
n n n n

be a partition of [0,1]. Find the Riemann sum of f and find I(f) on [0, 1].

Division of Mathematics Faculty of Education Suan Sunandh Rajabhat University page | 8



. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

7. (10 marks) Let g be differentiable and integrable on R. Define

f(z) = /1_:0 2g(t?) dt where = € R.

0 1
Show that / f(z)dx + / g(x)dx = 0.
-1 0

0
Hint: Use integration by part to / f(x) dx and change variable.
~1
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

8. (10 marks) Find a € R satisfying

i ak +ak‘—k‘—1 _§
Pt (a_|_ 1)k akt1 - 9’

Hint: Use Telescoping and Geometric Series.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

9. (10 marks) Let a € R. Determine whether

[%S) 1 kN K
Z ((H—(k)) converges or NOT.
k=1

Verify your answer.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

10. (10 marks) Determine whether

i::(—l)’f In (1 + l<:12>

k=1

is conditionally convergent or NOT.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

Some Definition to prove this examination.

1. f is continuous at a — Ve>030>0, |[x—a|<d— |f(x)— fla)] <€
2. f is uniformly continuous on E < Ve>030>0Vz,a€FE, [x—a|<d—|f(x)— fla)|<e
3. f is differentiable at a <~ lim M exists
z—a T —a
4. f is increasing on FE — Vi, 22 € E, 1 <xz2 — f(x1) < f(22)
5. f is decreasing on E <~ Vr,20 €E, 21 <xzy — f(z1) > f(a2)
6. f is integrable on [a, ] <— Ve>03P, U(f,P)—L(f,P)<e
7.  Riemann sum converges to I(f) — Ve>03FP. C{xg,x1,...., Tn} — Zf(tj)ij —I(f)| <e
i=1

m
D> a

k=n

oo
8. Cauchy Criterion: Zak converges <= Ve>0dNeNm>n>N —
k=1

<é€
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

1. (10 marks) Use definition to prove that
fl@)= (2 = 1)+ (z +1)°

is continuous at x = —1.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. (10 marks) Let f: R — R be uniformly continuous on R. Define
g(x) =z — f(x) wherez € R.

Prove that g is uniformly continuous on R.

Division of Mathematics Faculty of Education Suan Sunandh Rajabhat University page | 16



. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1
—2§\/5 forall = > 1.
x
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

4. (10 marks) Define f(x) =2z —e ?* where z € R.

Q1 (5 marks) Show that f is injective (one-to-one) on z € R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~!
differentiable on R.

Q3 (3 marks) Compute (f~1)/(—1).
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

5. (10 marks) Define
1 ifxze(0,1)
flx)=4q2 ifze(l,2)
3 ifzx=1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Y
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

6. (10 marks) Let f(z) = (2% — 1) + (x — 1)? where z € [0, 1] and

' 123
P= {j:j:O,l,...,n}: {0,,,,...,1}
n n n n

be a partition of [0,1]. Find the Riemann sum of f and find I(f) on [0, 1].
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

7. (10 marks) Let g be differentiable and integrable on R. Define

f(z) = /1_:0 2g(t?) dt where = € R.

0 1
Show that / f(z)dx + / g(x)dx = 0.
-1 0

0
Hint: Use integration by part to / f(x) dx and change variable.
~1
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

8. (10 marks) Find a € R satisfying

i ak +ak—k—1 _E
ot (a—|—1)k ak+1 - 3

Hint: Use Telescoping and Geometric Series.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

9. (10 marks) Let a € R. Determine whether

[%S) kN K
-1
E ((H—]iz)) converges or NOT.
k=1

Verify your answer.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

10. (10 marks) Determine whether

i::(—l)’f In (1 + k;)

k=1

is conditionally convergent or NOT.
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5. Deliver to the staff if you make a mistake in the test room.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

Some Definition to prove this examination.

1. f is continuous at a — Ve>030>0, |[x—a|<d— |f(x)— fla)] <€
2. f is uniformly continuous on E < Ve>030>0Vz,a€FE, [x—a|<d—|f(x)— fla)|<e
3. f is differentiable at a <~ lim M exists
z—a T —a
4. f is increasing on FE — Vi, 22 € E, 1 <xz2 — f(x1) < f(22)
5. f is decreasing on E <~ Vr,20 €E, 21 <xzy — f(z1) > f(a2)
6. f is integrable on [a, ] <— Ve>03P, U(f,P)—L(f,P)<e
7.  Riemann sum converges to I(f) — Ve>03FP. C{xg,x1,...., Tn} — Zf(tj)ij —I(f)| <e
i=1

m
D> a

k=n

oo
8. Cauchy Criterion: Zak converges <= Ve>0dNeNm>n>N —
k=1

<é€
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

1. (10 marks) Use definition to prove that
f(x) =2(2? —1) +2(x — 1)

is continuous at x = 1.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. (10 marks) Let f: R — R be uniformly continuous on R. Define
g(x) =2z + f(xr) wherez e R.

Prove that g is uniformly continuous on R.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1
—3§\/5 forall = > 1.
x
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

4. (10 marks) Define f(z) =2z —e ™™ where x € R.

Q1 (5 marks) Show that f is injective (one-to-one) on z € R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~!
differentiable on R.

Q3 (3 marks) Compute (f~1)/(—1).
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

5. (10 marks) Define
1 ifxze(0,1)
flx)=4q2 ifze(l,2)
3 ifzx=1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Y

Division of Mathematics Faculty of Education Suan Sunandh Rajabhat University page | 31



. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

6. (10 marks) Let f(z) = (2% — 1) + (x — 1)? where z € [0, 1] and

' 123
P= {j:j:O,l,...,n}: {0,,,,...,1}
n n n n

be a partition of [0,1]. Find the Riemann sum of f and find I(f) on [0, 1].
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

7. (10 marks) Let g be differentiable and integrable on R. Define

f(z) = /1_:0 2g(t?) dt where = € R.

0 1
Show that / f(z)dx + / g(x)dx = 0.
-1 0

0
Hint: Use integration by part to / f(x) dx and change variable.
~1
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

8. (10 marks) Find a € R satisfying

i ak +ak—k—1 _L?
— (a_|_1)k ak+1 - 4 :

Hint: Use Telescoping and Geometric Series.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

9. (10 marks) Let a € R. Determine whether

[%S) kN K
-1
E ((H—]ig)) converges or NOT.
k=1

Verify your answer.
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

10. (10 marks) Determine whether

i::(—l)’f In (1 + kl4>

k=1

is conditionally convergent or NOT.
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Math SSRU

Solution Final Exam. 2/2024
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. A (10 marks) Use definition to prove that
fl@)= (2 =1)+ (z - 1)

is continuous at x = 1.

Proof. Let € > 0. Choose § = min{1, £}.
Let x € R such that |x — 1] < d. Then |z — 1| < 1.

So, |z| — |1| < |x — 1| < 1. We obtain |z| < 2.
By triangle inequility, it follows that

f(z) = f(D)] =](@* = 1) + (z = 1)* = 0]
=|(z® = 1) + (2® — 2z + 1)| = |22° — 2z
= 2z(z — 1)| = 2|z||lx — 1]
<2(2)0
— 45 < 4. Z —e.

Therefore, f is continuous at = = 1. O

1. B (10 marks) Use definition to prove that
fla) = (2> = 1)+ (z +1)°
is continuous at x = —1.

Proof. Let € > 0. Choose § = min{1, $}.
Let z € R such that |z + 1| < 4. Then |z + 1] < 1.

So, |z| — |1| < |x 4+ 1| < 1. We obtain |z| < 2.
By triangle inequility, it follows that

(@) = f(-1)] = |(2* = 1) + (z +1)* ~ 0]
= (% = 1) + (2 + 2z + 1)| = |22% + 22|
= 2z(x + 1)| = 2|z||z + 1]

Therefore, f is continuous at z = —1. O
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

1. C (10 marks) Use definition to prove that
flz) =2(z* = 1) +2(z — 1)?
is continuous at x = 1.

Proof. Let € > 0. Choose § = min{1, £}.
Let z € R such that |z — 1| < 4. Then |z — 1] < 1.

So, |z| — |1| < |x — 1| < 1. We obtain |z| < 2.
By triangle inequility, it follows that

f(z) = f(D)] = [2(2? = 1) + 2(x = 1)* - 0|
= 12(2® — 1) + 2(2? — 22 4 1)| = |42? — 4x|
= |dz(z +1)| = 4|z||z — 1]
< 4(2)0

:85<8-§:5.

Therefore, f is continuous at z = —1. O
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. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

2. A (10 marks) Let f:R — R be uniformly continuous on R. Define
g(x) =z + f(x) wherez € R.
Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let € > 0. There is an dp > 0 such that

|z —a| < dp for all z,a € R implies |f(x)—f(a)|<%.

5
Choose § = min {50, 5} Let z,a € R such that |z —a| <. So, |z —a| <y and |z —af < §
Apply the triangle inequality and assumption, it implies that

l9(z) — g(a)| = |z + f(x) = (a + f(a))]

= |f(z) = fla) + = —q
= |f(z) = fla)| + |z — a
<f4+i=¢
2 2
Thus, ¢ is uniformly continuous on R. O

2. B (10 marks) Let f:R — R be uniformly continuous on R. Define
g(z) =x— f(z) wherex €R.
Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let ¢ > 0. There is an dg > 0 such that

|z —a|] < &g for all z,a € R implies |f(:n)—f(a)|<%.

5
Choose § = min {(50, 5} Let z,a € R such that |z —a| <. So, |z —a| <y and |z —al < §
Apply the triangle inequality and assumption, it implies that

l9(z) —g(a)| = |z — f(x) = (a = f(a))]
== (f(z) = fa)) + z —qf
< | = (f(z) = fla)| + |z —a
= (@) = f(a)| + |z — a
9

<z+

9 =E&.

| ™

Thus, ¢ is uniformly continuous on R. O
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2. C (10 marks) Let f:R — R be uniformly continuous on R. Define
g(x) =2z + f(xr) wherez e R.
Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let € > 0. There is an dp > 0 such that

|z —a| < dp for all z,a € R implies |f(x)—f(a)|<%.

5
Choose § = min {50, 5} Let x,a € R such that |z —a| <. So, |z —a| <y and |z —af < §
Apply the triangle inequality and assumption, it implies that

lg(x) — g(a)| = 122 + f(x) — (2a + f(a))]

= |f(z) = f(a) + 2(x — a)

|f() fla)] + 2|z —af
19.5 =

2 4

Thus, ¢ is uniformly continuous on R. O
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3. A (10 marks) Use the Mean Value Theorem (MVT) to prove that
lg\/i for all = > 1.
x

Proof. Let a > 1 and define

f(x) = % — /& where z € [1,qal.

Then f is continuous on [1,a] and differentiable on (1,a). It follows that

7(1) =0
fi(@) = —— - 2\}

x
By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla) = f(1) = f(c)(a—1)

1 1 1
- —vVa-0=|—-5—+—F= -1
sova-0=(-%-gz )@
Obviously, we see that —% — 2%/5 <0 for ce (1,a)
Since a > 1, a — 1 > 0. It implies that

1_\/&_(_1 1

2 2/c
1

We conclude that — < +/z forall = >1. O
T

)(a—1)<0

3. B (10 marks) Use the Mean Value Theorem (MVT) to prove that
1
—2§\/§ for all = > 1.
x

Proof. Let a > 1 and define

f(z) = % —V/x where x € [1,q].

Then f is continuous on [1,a] and differentiable on (1,a). It follows that
f1)=0

f’(ff):—ﬁ—ﬁ

By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla) = f(1) = f'(c)(a—1)

Obviously, we see that —% — =L < 0 for ¢ € (1,0)

2\/c
Since a > 1, a — 1 > 0. It implies that
1 2 1
- — =|—-——-—= -1 0
a va < 3 2\/E> (a=1) <
1
We conclude that — < Vx forall z>1. O
T
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3. C (10 marks) Use the Mean Value Theorem (MVT) to prove that
1
—3§\/5 forall = > 1.
x

Proof. Let a > 1 and define

f(z) = % —V/x where x € [1,q].

Then f is continuous on [1,a] and differentiable on (1,a). It follows that

ER

2z

By the Mean Value Theorem, there is a ¢ € (1,a) such that
fla) = f(1) = f(c)(a—1)

Obviously, we see that —c% - 2%& <0 force(1,a)
Since a > 1, a — 1 > 0. It implies that

i (-

1
We conclude that — < Vax  forall x> 1. O
x
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4. A(10 marks) Define f(z)=x —e ™ wherez € R.

Q1

Q2

Q3

(5 marks) Show that f is injective (one-to-one) on z € R.

Proof. Let z,y € R and z # y. WLOG z < y. So, —x > —y We obtain
et >e Y.
Thus, —e™* < —e™ Y. It follows that
r—e *<y—e?
flz) < f(y)
So, f(x) # f(y). Therefore, f is injective on R. O

(2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~1
differentiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.

(3 marks) Compute (f~1)'(1).
Solution. We see that f'(z) =14 e * and

fO)=0-¢€"=-1

So f~(~1) =0. By IFT,
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4. B(10 marks) Define f(z) =z — e ?® where z € R.

Q1

Q2

Q3

(5 marks) Show that f is injective (one-to-one) on z € R.

Proof. Let z,y € R and x # y. WLOG z < y. So, —2x > —2y We obtain
e 2 > e,
Thus, —e~2* < —e~ 2. It follows that
r—e T <y—e W
flz) < f(y)
So, f(x) # f(y). Therefore, f is injective on R. O

(2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~1
differentiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.

(3 marks) Compute (f~1)'(1).
Solution. We see that f/(z) = 1 + 2e~2* and

fO)=0-¢€"=-1

So f~(~1) =0. By IFT,

W= =
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4. C(10 marks) Define f(z) =2z —e™™ where z € R.

Q1 (5 marks) Show that f is injective (one-to-one) on z € R.

Q2

Q3

Proof. Let z,y € R and = # y. WLOG z < y. So, 2z < 2y and —z > —y We obtain
e >e V.
Thus, —e™™ < —e™Y. It follows that
2t —e " <2y —eY
flz) < f(y)

So, f(x) # f(y). Therefore, f is injective on R. O
(2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~1
differentiable on R.

Solution. Since f is injective, f~! exists. It is clear that f is continous on R. By IFT, we conclude
that f~! differentiable on R.

(3 marks) Compute (f~1)(1).
Solution. We see that f/'(z) =2+ e ® and

So f~1(~1) =0. By IFT,
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5. A,B,C (10 marks) Define
1 ifxze(0,1)
flz)=492 ifze(l,2)
3 ifzx=1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Proof. Let € > 0.
Case e < 4. So, 0 < 7 < 1. ChooseP:{O,l—E,l,l—l—E,Q}.

4 4
Y
34 o
9|
1<
| | X

0 1-5 1 1+

N1

We obtain
=115 3(9) +3 ()
rm =111 ()2}

9 9

U(f,P)—L(f,P):2<Z)+1(Z) :%s<1-e:s.

Case € > 4. Choose P = {0,1,2}. Then

U(f,P)=3(1-0)+3(2—1)
L(f,P)=1(1-0)+2(2—1)
U(f,P)—L(f,P)=2+1=3<4<e.

Thus, f is integrable on [0, 2]. O
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6. A,B,C (10 marks) Let f(z) = (2 — 1) + (z — 1)? where x € [0,1] and

' 123
P= {j:j:O,l,...,n}: {0,,,,...,1}
n n n n

be a partition of [0,1]. Find the Riemann sum of f and find I(f) on [0, 1].

Solution. Choose The Right End Point , i.e., f(t;) = f(£) on the subinterval [x;_1, z;]
and
)

1
Amj -4 _ = —  for all 7=12,3,...,n.
n n n

From f(z) = (2% — 1) + (z — 1)? = 222 — 22. We obtain

=3 (1) =13 () -2(2)]

7j=1 7j=1 ji=
RNV %]
n n? L~
_]ZI 7j=1
9 n \ 9 n
= (T2
=t j=1
12 nr+D)E2n+1) 2 n(n+1)
~n [n? 6 n 2
_(n+1)@2n+1) n+1
N 3n?2 n
Thus,
n
) . (n+D2n+1) n+1 1 1
) Plrgoj;f(j) R T n 3 3 7
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7. A,B,C (10 marks) Let g be differentiable and integrable on R. Define

f(z) = /1_:0 2g(t?) dt where = € R.

0 1
Show that / f(z) dm+/ g(x)dx = 0.
-1 0
0
Hint: Use integration by part to / f(x) dx and change variable.
-1

Solution. By the First Fundamental Theorem of Calculus and Chain rule,

f'(@) =29((=2)*) - (=2)" = 2g(2”) - (=1) = —2g(2?).

We have

By integration by part, we obtain

y[jjxx>d”::/(1x71x>dw:=thwﬂﬁl——/fixf%x)dx
0

=0fm>—<—1w<—n——/“aw<—2mcﬁ>¢r

-1

0
:O—O+/ 2z - g(x?) dx
-1

0
= / 9(¢(2))¢' () d Change of Variable ¢(z) = z*

4(0)
= / g(t) dt
B(—1)
0
— [ atvyar
1
1
:—/g@ﬁ
0
1
= —/ g(z)dz
0

Thus, /0 f(x) dx—i—/lg(x)dx:O.
0

-1
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8. A (10 marks) Find a € R satisfying

i ak +ak—k:—1 _§
P (a+ 1)k ak+1 2

Hint: Use Telescoping and Geometric Series.

Solution. We consider

ak ak —k—1 a k ak k+1
(a+1)F abtt  \a+1 ak+1l gkl

B a \F n ko k+1
- a+ 1 ak ak-l—l :
So, the above sequence consist of a geometric and telescoping sequences. It follows that

5 & a¥ ak —k—1 0 a \F Eok+1
2_;[(a+1)k+ ak+1 ]_Z <a—|—1> +<a’“_ak+1>

k=1

> Sk k1
> () ()

k=1 k=1
_a 1 1
a+1 . .
— - lim ——— fa>1
1—(13‘_1+<a Fovoo (k—f—l)akH) na

<1 > a’®+1
:a—|— 7—0 =
a a

We obtain 5a = 2(a? + 1) or (2a — 1)(a — 2) = 2a® — 5a + 2 = 0.
Then, a = 2,%. But a > 1. Thus,a =2 #

8. B (10 marks) Find a € R satisfying

i ak +ak—k:—1 _E
r (a+ 1)k ak+1 ~ 3

Hint: Use Telescoping and Geometric Series.

Solution. We consider

ak _’_ak:fk‘fl_ a k ak k+1
(CL + 1)k ak+1 - a+1 ak+1 ak+l

(o N (E Rkl
\a+1 ak  aktl )

So, the above sequence consist of a geometric and telescoping sequences. It follows that

10 < a* ak —k—1 > a \* ko ok+1
7= et ) =2 | (05) ()
0 k [e'e}
a> k. k+1
=3 (5) 2 ()
k:1<a+1 —\a a
_a 1 1
a+1 . .
— _oatl - — lim ———— f 1
— 225 * <a s (k+1)ak+1> =

(1 ) a?+1
a a

We obtain 10a = 3(a? + 1) or (3a — 1)(a — 3) = 3a® — 10a + 3 = 0.
Then, a = 3,%. But a > 1. Thus,a =3 #
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8. C (10 marks) Find a € R satisfying

i ak +ak—k—1 _L?
— (a+ 1)k ak+1 47

Hint: Use Telescoping and Geometric Series.

Solution. We consider

ak _’_ak:fkfl_ a k ak k+1
(CL + 1)k ak+1 - a+1 ak+1 ak+1

o a )\ L(E k1
- a+1 ak aktl )’
So, the above sequence consist of a geometric and telescoping sequences. It follows that
g_i af ak—k—1] a ’“+ ko k+1
4 - prt (a + 1)k ak+1 - — a+ 1 ak ak-‘rl
9] k o)
a kE k+1
= D )
a+1 a ak+

a 1 1
a+1 . .
= +(=-lim— fa>1
(a k—>loo(k+1)ak“1) ha=

<1 > a’®+1
:a,—|— ——O =
a a

We obtain 17a = 4(a® + 1) or (4a — 1)(a — 4) = 4a® — 17a + 4 = 0.
Then, a =4,%. But @ > 1. Thus,a =4 #
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9. A (10 marks) Let a € R. Determine whether

[%S) 1 kN K
Z ((H—(k)) converges or NOT.
k=1

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup

k—o00
—1)k
= lim sup ‘CH—()
k—o0 k

~ lim sup J1e =2 et
TR SUPY T T

Whatever we obtain sup { ‘agll, |“ZI|} = ‘“;” or |azl‘. For any a € R, it’s clear that

L la — 1| |a+ 1| o |a—1|_
T—nlirgosup{ P = lim ’ =0<1

n—oo
r= lim sup{’a_ly,‘a_{—l‘}: lim o + 1] =0<1
n—00 k k n—00 k

converges absolutely for all a € R.

oo _1\k k
We conclude that Z <a+(k1)>

k=1
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9. B (10 marks) Let a € R. Determine whether

[%S) kN K
-1
E ((H—]iz)) converges or NOT.
k=1

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup

(a—i—];—l)k)k

k—o00
—1)k
= lim sup ‘CH—(2)
k—o0 k
= lim su @ 1] Ja+1]
T noo P k2 0 k2

Whatever we obtain sup { ‘ak_Qll, |“,:21|} = ‘“k}ll or |al:;1‘. For any a € R, it’s clear that

L la — 1| |a+ 1| L |a—1|_
T—nlirgosup{ 2 2 = lim =0<1

nooo k2

L la —1| |a+ 1| L |a+1|_
r—nlggosup{ 2 12 —nlﬁngo 12 =0<1

9 1 kN K
We conclude that Z <a+l£:2)> converges absolutely for all a € R.
k=1
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9. C (10 marks) Let a € R. Determine whether

[%S) kN K
-1
E ((H—]ig)) converges or NOT.
k=1

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup

(a—i—]is—l)k)k

k—o00
—1)k
= lim sup ‘CH—(?))
k—o0 k
= lim su @ — 1] Ja+1]
T noo P k37 k3

Whatever we obtain sup { ‘“I;),ll, |“,;§1|} = ‘“k}ll or |al;§1‘. For any a € R, it’s clear that

L la — 1| |a+ 1| L |a—1|_
T—nlirgosup{ 3 13 = lim =0<1

nooo k3

L la —1| |a+ 1| L |a+1|_
r—nlggosup{ 3 13 —nlﬁngo 13 =0<1

9 1 kN K
We conclude that Z <a+li3)> converges absolutely for all a € R.
k=1
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10. A (10 marks) Determine whether

is conditionally convergent or NOT.

Solution. We consider

& o0
k —

> |1 ln<1+k2>‘ _Zln(sz)

k=1 k=1

Use the limit comparison test by by = 1%2’
1 2
In(1+ 14 T () )

k—00 = k—00 —73 k—oo \ 1+ iz

o o
1
Since Z b = Z w2 converges (p = 2), by the Limit Comparision Test, it implies that

k=1

Thus,

Therefore

k=1

= 1
Z In (1 + k:2> converges.
k=1

1
Z(—l)k In <1 + k2> is absolutely convergent.
k=1

, we conclude that

o0
1
Z(—l)k In <1 + l<:2> is not conditionally convergent.
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10. B (10 marks) Determine whether

is conditionally convergent or NOT.

Solution. We consider

& o0
> |=Dfn <1+ k3>‘ =S (1+ 1&)
k=1 k=1
Use the limit comparison test by by = 1%3’
1 3
Com(+d) . mn )
lim ———* = lim ————— = lim -
k—o0 i3 k—o0 — k—o0 1{—E§

o o
1
Since Z b = Z 3 converges (p = 3), by the Limit Comparision Test, it implies that

k=1 k=1

> 1

g In (1 + ) converges.
k3

k=1

Thus,

k=1
Therefore, we conclude that

1
Z(—l)k In <1 + ]€3> is absolutely convergent.

1>0

o0
1
Z(—l)k In <1 + k:5> is not conditionally convergent.
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10. C (10 marks) Determine whether

is conditionally convergent or NOT.

Solution. We consider

& o0
> |=Dfn <1+ k4>‘ =S (1+ k4>
k=1 k=1
Use the limit comparison test by by = 1%4’
1 4
Com(+d) . mrCw)
lim ———* = lim ———F—— = lim -
k—o0 KA k—o0 — 3 k—o0 1{—EZ

o o
1
Since Z b = Z = converges (p = 4), by the Limit Comparision Test, it implies that

k=1 k=1

= 1
Z In (1 + k:4> converges.
k=1

Thus,

k=1
Therefore, we conclude that

1
Z(—l)k In <1 + k4> is absolutely convergent.

1>0

o0
1
Z(—l)k In <1 + l<:4> is not conditionally convergent.
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