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Some Definition to prove this examination.

1. f is continuous at a ⇐⇒ ∀ε > 0 ∃δ > 0, |x− a| < δ −→ |f(x)− f(a)| < ε

2. f is uniformly continuous on E ⇐⇒ ∀ε > 0 ∃δ > 0 ∀x, a ∈ E, |x− a| < δ −→ |f(x)− f(a)| < ε

3. f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

4. f is increasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) < f(x2)

5. f is decreasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) > f(x2)

6. f is integrable on [a, b] ⇐⇒ ∀ε > 0 ∃Pε, U(f, P )− L(f, P ) < ε

7. Riemann sum converges to I(f) ⇐⇒ ∀ε > 0 ∃Pε ⊆ {x0, x1, ..., xn} −→

∣∣∣∣∣
n∑

i=1

f(tj)∆xj − I(f)

∣∣∣∣∣ < ε

8. Cauchy Criterion:
∞∑
k=1

ak converges ⇐⇒ ∀ε > 0 ∃N ∈ N,m > n ≥ N −→

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε
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1. (10 marks) Use definition to prove that

f(x) = (x2 − 1) + (x− 1)2

is continuous at x = 1.
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2. (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = x+ f(x) where x ∈ R.

Prove that g is uniformly continuous on R.
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x
≤

√
x for all x ≥ 1.
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4. (10 marks) Define f(x) = x− e−x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.
Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Q3 (3 marks) Compute (f−1)′(−1).
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5. (10 marks) Define

f(x) =


1 if x ∈ (0, 1)

2 if x ∈ (1, 2)

3 if x = 1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

X

Y
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6. (10 marks) Let f(x) = (x2 − 1) + (x− 1)2 where x ∈ [0, 1] and

P =

{
j

n
: j = 0, 1, ..., n

}
=

{
0,

1

n
,
2

n
,
3

n
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f) on [0, 1].
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ −x

1
2g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.
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8. (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

5

2
.

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k

)k

converges or NOT.

Verify your answer.
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10. (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k2

)
is conditionally convergent or NOT.
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Some Definition to prove this examination.

1. f is continuous at a ⇐⇒ ∀ε > 0 ∃δ > 0, |x− a| < δ −→ |f(x)− f(a)| < ε

2. f is uniformly continuous on E ⇐⇒ ∀ε > 0 ∃δ > 0 ∀x, a ∈ E, |x− a| < δ −→ |f(x)− f(a)| < ε

3. f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

4. f is increasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) < f(x2)

5. f is decreasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) > f(x2)

6. f is integrable on [a, b] ⇐⇒ ∀ε > 0 ∃Pε, U(f, P )− L(f, P ) < ε

7. Riemann sum converges to I(f) ⇐⇒ ∀ε > 0 ∃Pε ⊆ {x0, x1, ..., xn} −→

∣∣∣∣∣
n∑

i=1

f(tj)∆xj − I(f)

∣∣∣∣∣ < ε

8. Cauchy Criterion:
∞∑
k=1

ak converges ⇐⇒ ∀ε > 0 ∃N ∈ N,m > n ≥ N −→

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε
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1. (10 marks) Use definition to prove that

f(x) = (x2 − 1) + (x+ 1)2

is continuous at x = −1.

Division of Mathematics Faculty of Education Suan Sunandh Rajabhat University page | 15



MAC3309 Math Analysis ID......................................... SEC.................

2. (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = x− f(x) where x ∈ R.

Prove that g is uniformly continuous on R.
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x2
≤

√
x for all x ≥ 1.
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4. (10 marks) Define f(x) = x− e−2x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.
Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Q3 (3 marks) Compute (f−1)′(−1).
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5. (10 marks) Define

f(x) =


1 if x ∈ (0, 1)

2 if x ∈ (1, 2)

3 if x = 1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

X

Y
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6. (10 marks) Let f(x) = (x2 − 1) + (x− 1)2 where x ∈ [0, 1] and

P =

{
j

n
: j = 0, 1, ..., n

}
=

{
0,

1

n
,
2

n
,
3

n
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f) on [0, 1].
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ −x

1
2g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.
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8. (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

10

3
.

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k2

)k

converges or NOT.

Verify your answer.
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10. (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k3

)
is conditionally convergent or NOT.
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Some Definition to prove this examination.

1. f is continuous at a ⇐⇒ ∀ε > 0 ∃δ > 0, |x− a| < δ −→ |f(x)− f(a)| < ε

2. f is uniformly continuous on E ⇐⇒ ∀ε > 0 ∃δ > 0 ∀x, a ∈ E, |x− a| < δ −→ |f(x)− f(a)| < ε

3. f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

4. f is increasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) < f(x2)

5. f is decreasing on E ⇐⇒ ∀x1, x2 ∈ E, x1 < x2 −→ f(x1) > f(x2)

6. f is integrable on [a, b] ⇐⇒ ∀ε > 0 ∃Pε, U(f, P )− L(f, P ) < ε

7. Riemann sum converges to I(f) ⇐⇒ ∀ε > 0 ∃Pε ⊆ {x0, x1, ..., xn} −→

∣∣∣∣∣
n∑

i=1

f(tj)∆xj − I(f)

∣∣∣∣∣ < ε

8. Cauchy Criterion:
∞∑
k=1

ak converges ⇐⇒ ∀ε > 0 ∃N ∈ N,m > n ≥ N −→

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε
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1. (10 marks) Use definition to prove that

f(x) = 2(x2 − 1) + 2(x− 1)2

is continuous at x = 1.
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2. (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = 2x+ f(x) where x ∈ R.

Prove that g is uniformly continuous on R.
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x3
≤

√
x for all x ≥ 1.
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4. (10 marks) Define f(x) = 2x− e−x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.
Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Q3 (3 marks) Compute (f−1)′(−1).
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5. (10 marks) Define

f(x) =


1 if x ∈ (0, 1)

2 if x ∈ (1, 2)

3 if x = 1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

X

Y
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6. (10 marks) Let f(x) = (x2 − 1) + (x− 1)2 where x ∈ [0, 1] and

P =

{
j

n
: j = 0, 1, ..., n

}
=

{
0,

1

n
,
2

n
,
3

n
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f) on [0, 1].
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7. (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ −x

1
2g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.
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8. (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

17

4
.

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k3

)k

converges or NOT.

Verify your answer.
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10. (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k4

)
is conditionally convergent or NOT.
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Solution Final Exam. 2/2024
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. A (10 marks) Use definition to prove that

f(x) = (x2 − 1) + (x− 1)2

is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{1, ε4}.
Let x ∈ R such that |x− 1| < δ. Then |x− 1| < 1.

So, |x| − |1| ≤ |x− 1| < 1. We obtain |x| ≤ 2.

By triangle inequility, it follows that

|f(x)− f(1)| =
∣∣(x2 − 1) + (x− 1)2 − 0

∣∣
= |(x2 − 1) + (x2 − 2x+ 1)| = |2x2 − 2x|
= |2x(x− 1)| = 2|x||x− 1|
< 2(2)δ

= 4δ < 4 · ε
4
= ε.

Therefore, f is continuous at x = 1.

1. B (10 marks) Use definition to prove that

f(x) = (x2 − 1) + (x+ 1)2

is continuous at x = −1.

Proof. Let ε > 0. Choose δ = min{1, ε4}.
Let x ∈ R such that |x+ 1| < δ. Then |x+ 1| < 1.

So, |x| − |1| ≤ |x+ 1| < 1. We obtain |x| ≤ 2.

By triangle inequility, it follows that

|f(x)− f(−1)| =
∣∣(x2 − 1) + (x+ 1)2 − 0

∣∣
= |(x2 − 1) + (x2 + 2x+ 1)| = |2x2 + 2x|
= |2x(x+ 1)| = 2|x||x+ 1|
< 2(2)δ

= 4δ < 4 · ε
4
= ε.

Therefore, f is continuous at x = −1.
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1. C (10 marks) Use definition to prove that

f(x) = 2(x2 − 1) + 2(x− 1)2

is continuous at x = 1.

Proof. Let ε > 0. Choose δ = min{1, ε8}.
Let x ∈ R such that |x− 1| < δ. Then |x− 1| < 1.

So, |x| − |1| ≤ |x− 1| < 1. We obtain |x| ≤ 2.

By triangle inequility, it follows that

|f(x)− f(1)| =
∣∣2(x2 − 1) + 2(x− 1)2 − 0

∣∣
= |2(x2 − 1) + 2(x2 − 2x+ 1)| = |4x2 − 4x|
= |4x(x+ 1)| = 4|x||x− 1|
< 4(2)δ

= 8δ < 8 · ε
8
= ε.

Therefore, f is continuous at x = −1.
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2. A (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = x+ f(x) where x ∈ R.

Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let ε > 0. There is an δ0 > 0 such that

|x− a| < δ0 for all x, a ∈ R implies |f(x)− f(a)| < ε

2
.

Choose δ = min
{
δ0,

ε

2

}
. Let x, a ∈ R such that |x− a| < δ. So, |x− a| < δ0 and |x− a| < ε

2

Apply the triangle inequality and assumption, it implies that

|g(x)− g(a)| = |x+ f(x)− (a+ f(a))|
= |f(x)− f(a) + x− a|
= |f(x)− f(a)|+ |x− a|

<
ε

2
+

ε

2
= ε.

Thus, g is uniformly continuous on R.

2. B (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = x− f(x) where x ∈ R.

Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let ε > 0. There is an δ0 > 0 such that

|x− a| < δ0 for all x, a ∈ R implies |f(x)− f(a)| < ε

2
.

Choose δ = min
{
δ0,

ε

2

}
. Let x, a ∈ R such that |x− a| < δ. So, |x− a| < δ0 and |x− a| < ε

2

Apply the triangle inequality and assumption, it implies that

|g(x)− g(a)| = |x− f(x)− (a− f(a))|
= | − (f(x)− f(a)) + x− a|
≤ | − (f(x)− f(a))|+ |x− a|
= |f(x)− f(a)|+ |x− a|

<
ε

2
+

ε

2
= ε.

Thus, g is uniformly continuous on R.
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2. C (10 marks) Let f : R → R be uniformly continuous on R. Define

g(x) = 2x+ f(x) where x ∈ R.

Prove that g is uniformly continuous on R.

Proof. Assume that f be uniformly continuous on R.
Let ε > 0. There is an δ0 > 0 such that

|x− a| < δ0 for all x, a ∈ R implies |f(x)− f(a)| < ε

2
.

Choose δ = min
{
δ0,

ε

2

}
. Let x, a ∈ R such that |x− a| < δ. So, |x− a| < δ0 and |x− a| < ε

4

Apply the triangle inequality and assumption, it implies that

|g(x)− g(a)| = |2x+ f(x)− (2a+ f(a))|
= |f(x)− f(a) + 2(x− a)|
= |f(x)− f(a)|+ 2|x− a|

<
ε

2
+ 2 · ε

4
= ε.

Thus, g is uniformly continuous on R.
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3. A (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x
≤

√
x for all x ≥ 1.

Proof. Let a > 1 and define

f(x) =
1

x
−
√
x where x ∈ [1, a].

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f(1) = 0

f ′(x) = − 1

x2
− 1

2
√
x

By the Mean Value Theorem, there is a c ∈ (1, a) such that

f(a)− f(1) = f ′(c)(a− 1)

1

a
−
√
a− 0 =

(
− 1

c2
− 1

2
√
c

)
(a− 1)

Obviously, we see that − 1
c2

− 1
2
√
c
< 0 for c ∈ (1, a)

Since a > 1, a− 1 > 0. It implies that
1

a
−
√
a =

(
− 1

c2
− 1

2
√
c

)
(a− 1) < 0

We conclude that 1

x
≤

√
x for all x ≥ 1.

3. B (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x2
≤

√
x for all x ≥ 1.

Proof. Let a > 1 and define

f(x) =
1

x2
−
√
x where x ∈ [1, a].

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f(1) = 0

f ′(x) = − 2

x3
− 1

2
√
x

By the Mean Value Theorem, there is a c ∈ (1, a) such that

f(a)− f(1) = f ′(c)(a− 1)

1

a2
−
√
a− 0 =

(
− 2

c3
− 1

2
√
c

)
(a− 1)

Obviously, we see that − 2
c3

− 1
2
√
c
< 0 for c ∈ (1, a)

Since a > 1, a− 1 > 0. It implies that
1

a
−
√
a =

(
− 2

c3
− 1

2
√
c

)
(a− 1) < 0

We conclude that 1

x2
≤

√
x for all x ≥ 1.
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3. C (10 marks) Use the Mean Value Theorem (MVT) to prove that

1

x3
≤

√
x for all x ≥ 1.

Proof. Let a > 1 and define

f(x) =
1

x3
−
√
x where x ∈ [1, a].

Then f is continuous on [1, a] and differentiable on (1, a). It follows that

f(1) = 0

f ′(x) = − 3

x4
− 1

2
√
x

By the Mean Value Theorem, there is a c ∈ (1, a) such that

f(a)− f(1) = f ′(c)(a− 1)

1

a2
−
√
a− 0 =

(
− 3

c4
− 1

2
√
c

)
(a− 1)

Obviously, we see that − 3
c4

− 1
2
√
c
< 0 for c ∈ (1, a)

Since a > 1, a− 1 > 0. It implies that

1

a
−
√
a =

(
− 3

c4
− 1

2
√
c

)
(a− 1) < 0

We conclude that 1

x3
≤

√
x for all x ≥ 1.
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4. A(10 marks) Define f(x) = x− e−x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.

Proof. Let x, y ∈ R and x ̸= y. WLOG x < y. So, −x > −y We obtain

e−x > e−y.

Thus, −e−x < −e−y. It follows that

x− e−x < y − e−y

f(x) < f(y)

So, f(x) ̸= f(y). Therefore, f is injective on R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Solution. Since f is injective, f−1 exists. It is clear that f is continous on R. By IFT, we conclude
that f−1 differentiable on R.

Q3 (3 marks) Compute (f−1)′(1).
Solution. We see that f ′(x) = 1 + e−x and

f(0) = 0− e0 = −1.

So f−1(−1) = 0. By IFT,

(f−1)′ (−1) =
1

f ′(f−1(−1))

=
1

f ′(0)

=
1

1 + e0

=
1

1 + 1

=
1

2
#
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4. B(10 marks) Define f(x) = x− e−2x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.

Proof. Let x, y ∈ R and x ̸= y. WLOG x < y. So, −2x > −2y We obtain

e−2x > e−2y.

Thus, −e−2x < −e−2y. It follows that

x− e−2x < y − e−2y

f(x) < f(y)

So, f(x) ̸= f(y). Therefore, f is injective on R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Solution. Since f is injective, f−1 exists. It is clear that f is continous on R. By IFT, we conclude
that f−1 differentiable on R.

Q3 (3 marks) Compute (f−1)′(1).
Solution. We see that f ′(x) = 1 + 2e−2x and

f(0) = 0− e0 = −1.

So f−1(−1) = 0. By IFT,

(f−1)′ (−1) =
1

f ′(f−1(−1))

=
1

f ′(0)

=
1

1 + 2e0

=
1

1 + 2

=
1

3
#
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4. C(10 marks) Define f(x) = 2x− e−x where x ∈ R.

Q1 (5 marks) Show that f is injective (one-to-one) on x ∈ R.

Proof. Let x, y ∈ R and x ̸= y. WLOG x < y. So, 2x < 2y and −x > −y We obtain

e−x > e−y.

Thus, −e−x < −e−y. It follows that

2x− e−x < 2y − e−y

f(x) < f(y)

So, f(x) ̸= f(y). Therefore, f is injective on R.

Q2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f−1

differentiable on R.
Solution. Since f is injective, f−1 exists. It is clear that f is continous on R. By IFT, we conclude
that f−1 differentiable on R.

Q3 (3 marks) Compute (f−1)′(1).
Solution. We see that f ′(x) = 2 + e−x and

f(0) = 0− e0 = −1.

So f−1(−1) = 0. By IFT,

(f−1)′ (−1) =
1

f ′(f−1(−1))

=
1

f ′(0)

=
1

2 + e0

=
1

2 + 1

=
1

3
#
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5. A,B,C (10 marks) Define

f(x) =


1 if x ∈ (0, 1)

2 if x ∈ (1, 2)

3 if x = 1

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Proof. Let ε > 0.
Case ε < 4. So, 0 < ε

4 < 1. Choose P =
{
0, 1− ε

4
, 1, 1 +

ε

4
, 2
}

.

X

Y

0 1 2

1

2

3

1− ε
4 1 + ε

4

We obtain

U(f, P ) = 1
(
1− ε

4

)
+ 3

(ε
4

)
+ 3

(ε
4

)
+ 2

(
1− ε

4

)
L(f, P ) = 1

(
1− ε

4

)
+ 1

(ε
4

)
+ 2

(ε
4

)
+ 2

(
1− ε

4

)
U(f, P )− L(f, P ) = 2

(ε
4

)
+ 1

(ε
4

)
=

3

4
· ε < 1 · ε = ε.

Case ε ≥ 4. Choose P = {0, 1, 2}. Then

U(f, P ) = 3 (1− 0) + 3 (2− 1)

L(f, P ) = 1 (1− 0) + 2 (2− 1)

U(f, P )− L(f, P ) = 2 + 1 = 3 < 4 ≤ ε.

Thus, f is integrable on [0, 2].
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6. A,B,C (10 marks) Let f(x) = (x2 − 1) + (x− 1)2 where x ∈ [0, 1] and

P =

{
j

n
: j = 0, 1, ..., n

}
=

{
0,

1

n
,
2

n
,
3

n
, ..., 1

}
be a partition of [0, 1]. Find the Riemann sum of f and find I(f) on [0, 1].
Solution. Choose The Right End Point , i.e., f(tj) = f( jn) on the subinterval [xj−1, xj ]
and

∆xj =
j

n
− (j − 1)

n
=

1

n
for all j = 1, 2, 3, ..., n.

From f(x) = (x2 − 1) + (x− 1)2 = 2x2 − 2x. We obtain

n∑
j=1

f(tj)∆xj =
n∑

j=1

f

(
j

n

)
1

n
=

1

n

n∑
j=1

[
2

(
j

n

)2

− 2

(
j

n

)]

=
1

n

 n∑
j=1

2j2

n2
−

n∑
j=1

2j

n


=

1

n

 2

n2

n∑
j=1

j2 − 2

n

n∑
j=1

j


=

1

n

[
2

n2
· n(n+ 1)(2n+ 1)

6
− 2

n
· n(n+ 1)

2

]
=

(n+ 1)(2n+ 1)

3n2
− n+ 1

n

Thus,

I(f) = lim
∥P∥→0

n∑
j=1

f(tj)∆xj = lim
n→∞

(n+ 1)(2n+ 1)

3n2
− n+ 1

n
=

1

3
− 1 = −1

3
#
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7. A,B,C (10 marks) Let g be differentiable and integrable on R. Define

f(x) =

∫ −x

1
2g(t2) dt where x ∈ R.

Show that
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.

Hint: Use integration by part to
∫ 0

−1
f(x) dx and change variable.

Solution. By the First Fundamental Theorem of Calculus and Chain rule,

f ′(x) = 2g((−x)2) · (−x)′ = 2g(x2) · (−1) = −2g(x2).

We have

f(−1) =

∫ 1

1
2g(t2) dt = 0

By integration by part, we obtain∫ 0

−1
f(x) dx =

∫ 0

−1
x′f(x) dx = [xf(x)]0−1 −

∫ 0

−1
xf ′(x) dx

= 0f(0)− (−1)f(−1)−
∫ 0

−1
x · (−2)g(x2) dx

= 0− 0 +

∫ 0

−1
2x · g(x2) dx

=

∫ 0

−1
g(x2) · (x2)′ dx

=

∫ 0

−1
g(ϕ(x))ϕ′(x) dx Change of Variable ϕ(x) = x2

=

∫ ϕ(0)

ϕ(−1)
g(t) dt

=

∫ 0

1
g(t) dt

= −
∫ 1

0
g(t) dt

= −
∫ 1

0
g(x) dx

Thus,
∫ 0

−1
f(x) dx+

∫ 1

0
g(x) dx = 0.
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8. A (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

5

2
.

Hint: Use Telescoping and Geometric Series.
Solution. We consider

ak

(a+ 1)k
+

ak − k − 1

ak+1
=

(
a

a+ 1

)k

+
ak

ak+1
− k + 1

ak+1

=

(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)
.

So, the above sequence consist of a geometric and telescoping sequences. It follows that

5

2
=

∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

∞∑
k=1

[(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)]

=
∞∑
k=1

(
a

a+ 1

)k

+

∞∑
k=1

(
k

ak
− k + 1

ak+1

)
.

=
a

a+1

1− a
a+1

+

(
1

a
− lim

k→∞

1

(k + 1)ak+1

)
if a > 1

= a+

(
1

a
− 0

)
=

a2 + 1

a

We obtain 5a = 2(a2 + 1) or (2a− 1)(a− 2) = 2a2 − 5a+ 2 = 0.
Then, a = 2, 12 . But a > 1. Thus, a = 2 #

8. B (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

10

3
.

Hint: Use Telescoping and Geometric Series.
Solution. We consider

ak

(a+ 1)k
+

ak − k − 1

ak+1
=

(
a

a+ 1

)k

+
ak

ak+1
− k + 1

ak+1

=

(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)
.

So, the above sequence consist of a geometric and telescoping sequences. It follows that

10

3
=

∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

∞∑
k=1

[(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)]

=
∞∑
k=1

(
a

a+ 1

)k

+
∞∑
k=1

(
k

ak
− k + 1

ak+1

)
.

=
a

a+1

1− a
a+1

+

(
1

a
− lim

k→∞

1

(k + 1)ak+1

)
if a > 1

= a+

(
1

a
− 0

)
=

a2 + 1

a

We obtain 10a = 3(a2 + 1) or (3a− 1)(a− 3) = 3a2 − 10a+ 3 = 0.
Then, a = 3, 13 . But a > 1. Thus, a = 3 #
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8. C (10 marks) Find a ∈ R satisfying
∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

17

4
.

Hint: Use Telescoping and Geometric Series.
Solution. We consider

ak

(a+ 1)k
+

ak − k − 1

ak+1
=

(
a

a+ 1

)k

+
ak

ak+1
− k + 1

ak+1

=

(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)
.

So, the above sequence consist of a geometric and telescoping sequences. It follows that

17

4
=

∞∑
k=1

[
ak

(a+ 1)k
+

ak − k − 1

ak+1

]
=

∞∑
k=1

[(
a

a+ 1

)k

+

(
k

ak
− k + 1

ak+1

)]

=

∞∑
k=1

(
a

a+ 1

)k

+

∞∑
k=1

(
k

ak
− k + 1

ak+1

)
.

=
a

a+1

1− a
a+1

+

(
1

a
− lim

k→∞

1

(k + 1)ak+1

)
if a > 1

= a+

(
1

a
− 0

)
=

a2 + 1

a

We obtain 17a = 4(a2 + 1) or (4a− 1)(a− 4) = 4a2 − 17a+ 4 = 0.
Then, a = 4, 14 . But a > 1. Thus, a = 4 #
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9. A (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k

)k

converges or NOT.

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup
k→∞

∣∣∣∣∣
(
a+ (−1)k

k

)k
∣∣∣∣∣
1
k

= lim sup
k→∞

∣∣∣∣a+ (−1)k

k

∣∣∣∣
= lim

n→∞
sup

{
|a− 1|

k
,
|a+ 1|

k

}
Whatever we obtain sup

{
|a−1|
k , |a+1|

k

}
= |a−1|

k or |a+1|
k . For any a ∈ R, it’s clear that

r = lim
n→∞

sup
{
|a− 1|

k
,
|a+ 1|

k

}
= lim

n→∞

|a− 1|
k

= 0 < 1

r = lim
n→∞

sup
{
|a− 1|

k
,
|a+ 1|

k

}
= lim

n→∞

|a+ 1|
k

= 0 < 1

We conclude that
∞∑
k=1

(
a+ (−1)k

k

)k

converges absolutely for all a ∈ R.
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9. B (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k2

)k

converges or NOT.

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup
k→∞

∣∣∣∣∣
(
a+ (−1)k

k2

)k
∣∣∣∣∣
1
k

= lim sup
k→∞

∣∣∣∣a+ (−1)k

k2

∣∣∣∣
= lim

n→∞
sup

{
|a− 1|
k2

,
|a+ 1|
k2

}
Whatever we obtain sup

{
|a−1|
k2

, |a+1|
k2

}
= |a−1|

k2
or |a+1|

k2
. For any a ∈ R, it’s clear that

r = lim
n→∞

sup
{
|a− 1|
k2

,
|a+ 1|
k2

}
= lim

n→∞

|a− 1|
k2

= 0 < 1

r = lim
n→∞

sup
{
|a− 1|
k2

,
|a+ 1|
k2

}
= lim

n→∞

|a+ 1|
k2

= 0 < 1

We conclude that
∞∑
k=1

(
a+ (−1)k

k2

)k

converges absolutely for all a ∈ R.
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9. C (10 marks) Let a ∈ R. Determine whether

∞∑
k=1

(
a+ (−1)k

k3

)k

converges or NOT.

Verify your answer.

Solution.

Proof. Use the Root Test, we consider

r = lim sup
k→∞

∣∣∣∣∣
(
a+ (−1)k

k3

)k
∣∣∣∣∣
1
k

= lim sup
k→∞

∣∣∣∣a+ (−1)k

k3

∣∣∣∣
= lim

n→∞
sup

{
|a− 1|
k3

,
|a+ 1|
k3

}
Whatever we obtain sup

{
|a−1|
k3

, |a+1|
k3

}
= |a−1|

k3
or |a+1|

k3
. For any a ∈ R, it’s clear that

r = lim
n→∞

sup
{
|a− 1|
k3

,
|a+ 1|
k3

}
= lim

n→∞

|a− 1|
k3

= 0 < 1

r = lim
n→∞

sup
{
|a− 1|
k3

,
|a+ 1|
k3

}
= lim

n→∞

|a+ 1|
k3

= 0 < 1

We conclude that
∞∑
k=1

(
a+ (−1)k

k3

)k

converges absolutely for all a ∈ R.
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10. A (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k2

)
is conditionally convergent or NOT.
Solution. We consider

∞∑
k=1

∣∣∣∣(−1)k ln
(
1 +

1

k2

)∣∣∣∣ = ∞∑
k=1

ln
(
1 +

1

k2

)
.

Use the limit comparison test by bk = 1
k2

,

lim
k→∞

ln
(
1 + 1

k2

)
1
k2

= lim
k→∞

1
1+ 1

k2
·
(
− 2

k3

)
− 2

k3

= lim
k→∞

(
1

1 + 1
k2

)
= 1 > 0

Since
∞∑
k=1

bk =
∞∑
k=1

1

k2
converges (p = 2), by the Limit Comparision Test, it implies that

∞∑
k=1

ln
(
1 +

1

k2

)
converges.

Thus,
∞∑
k=1

(−1)k ln
(
1 +

1

k2

)
is absolutely convergent.

Therefore, we conclude that
∞∑
k=1

(−1)k ln
(
1 +

1

k2

)
is not conditionally convergent.
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10. B (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k3

)
is conditionally convergent or NOT.
Solution. We consider

∞∑
k=1

∣∣∣∣(−1)k ln
(
1 +

1

k3

)∣∣∣∣ = ∞∑
k=1

ln
(
1 +

1

k3

)
.

Use the limit comparison test by bk = 1
k3

,

lim
k→∞

ln
(
1 + 1

k3

)
1
k3

= lim
k→∞

1
1+ 1

k3
·
(
− 3

k4

)
− 3

k4

= lim
k→∞

(
1

1 + 1
k3

)
= 1 > 0

Since
∞∑
k=1

bk =
∞∑
k=1

1

k3
converges (p = 3), by the Limit Comparision Test, it implies that

∞∑
k=1

ln
(
1 +

1

k3

)
converges.

Thus,
∞∑
k=1

(−1)k ln
(
1 +

1

k3

)
is absolutely convergent.

Therefore, we conclude that
∞∑
k=1

(−1)k ln
(
1 +

1

k3

)
is not conditionally convergent.
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10. C (10 marks) Determine whether
∞∑
k=1

(−1)k ln
(
1 +

1

k4

)
is conditionally convergent or NOT.
Solution. We consider

∞∑
k=1

∣∣∣∣(−1)k ln
(
1 +

1

k4

)∣∣∣∣ = ∞∑
k=1

ln
(
1 +

1

k4

)
.

Use the limit comparison test by bk = 1
k4

,

lim
k→∞

ln
(
1 + 1

k4

)
1
k4

= lim
k→∞

1
1+ 1

k4
·
(
− 4

k5

)
− 4

k5

= lim
k→∞

(
1

1 + 1
k4

)
= 1 > 0

Since
∞∑
k=1

bk =
∞∑
k=1

1

k4
converges (p = 4), by the Limit Comparision Test, it implies that

∞∑
k=1

ln
(
1 +

1

k4

)
converges.

Thus,
∞∑
k=1

(−1)k ln
(
1 +

1

k4

)
is absolutely convergent.

Therefore, we conclude that
∞∑
k=1

(−1)k ln
(
1 +

1

k4

)
is not conditionally convergent.
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