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Some Definition to prove this examination.

1. lim
n→∞

xn = a ⇐⇒ ∀ε > 0 ∃N ∈ N, n ≥ N −→ |xn − a| < ε

2. lim
n→∞

xn = +∞ ⇐⇒ ∀M ∈ R ∃N ∈ N, n ≥ N −→ xn > M

3. lim
n→∞

xn = −∞ ⇐⇒ ∀M ∈ R ∃N ∈ N, n ≥ N −→ xn < M

4. lim
x→a

f(x) = L ⇐⇒ ∀ε > 0 ∃δ > 0, 0 < |x− a| < δ −→ |f(x)− L| < ε

5. lim
x→∞

f(x) = L ⇐⇒ ∀ε > 0 ∃M ∈ R, x > M −→ |f(x)− L| < ε

6. lim
x→−∞

f(x) = L ⇐⇒ ∀ε > 0 ∃M ∈ R, x < M −→ |f(x)− L| < ε

7. lim
x→a

f(x) = +∞ ⇐⇒ ∀M > 0 ∃δ > 0, 0 < |x− a| < δ −→ f(x) > M

8. lim
x→a

f(x) = −∞ ⇐⇒ ∀M < 0 ∃δ > 0, 0 < |x− a| < δ −→ f(x) < M
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1. (10 marks) Let a and b be real numbers. Prove that

a2 + b2 +
1

2
≥ a+ b.
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2. (10 marks) Let x and y be real numbers. Prove that

if |2x− y| = |x− 2y|, then |x+ y| ≤ 2|x|.
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3. (10 marks) Define the set

A =

{
6 +

7

n2
: n ∈ N

}
.

Find supA and infA with proving them.
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4. (10 marks) Use Definition to prove that

lim
n→∞

2n2 + 4

6n2 + 7
=

1

3
.
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5. (10 marks) Let {xn} and {yn} be sequences in real. Prove that

if xn and xn + yn coverges, then yn also converges.
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6. (10 marks) Use definition to prove that{
1

n(n+ 1)

}
is a Caucy sequence.
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7. (10 marks) Let A and B be non-empty subset of R.
Assume that A is open and B is closed.

Determine whether A−B is open. Verify your answer.
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8. (10 marks) Use definition to prove that

lim
x→1

1

x2 + 1
=

1

2
.
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9. (10 marks) Use definition prove that

lim
x→1+

x

1− x2
= −∞.
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10. (10 marks) Let f and g be functions on R such that

g(x) > 1 for all x ∈ R

Let a be a limit point of R and f(x) ̸= 0 for all x ∈ R. Prove that if f(x) → 0 as x → a , then

lim
x→a

g(x)

|f(x)|
= +∞.
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Solution Midterm Exam. 2/2023
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. (10 marks) Let a and b be real numbers. Prove that

a2 + b2 +
1

2
≥ a+ b.

TYPE I

Proof. Let a and b be real numbers. By the fact that

(a+ b− 1)2 ≥ 0 and (a− b)2 ≥ 0.

We obtain

(a+ b− 1)2 + (a− b)2 ≥ 0

(a+ b)2 − 2(a+ b) + 1 + a2 − 2ab+ b2 ≥ 0

a2 + 2ab+ b2 − 2a− 2b+ 1 + a2 − 2ab+ b2 ≥ 0

2a2 + 2b2 − 2a− 2b+ 1 ≥ 0

2(a2 + b2) + 1 ≥ 2(a+ b)

a2 + b2 +
1

2
≥ a+ b

TYPE II

Proof. Let a and b be real numbers. By the fact that

(a− 1
2)

2 ≥ 0 and (b− 1
2)

2 ≥ 0.

We obtain (
a− 1

2

)2

+

(
b− 1

2

)2

≥ 0

a2 − a+
1

4
+ b2 − b+

1

4
≥ 0

a2 + b2 +
1

2
≥ a+ b
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2. (10 marks) Let x and y be real numbers. Prove that

if |2x− y| = |x− 2y|, then |x+ y| ≤ 2|x|.

Proof. Let x be a real numbers.
Assume that |2x− y| = |x− 2y|. Then

|2x− y|2 = |x− 2y|2

(2x− y)2 = (x− 2y)2

4x2 − 4xy + y2 = x2 − 4xy + 4y2

3x2 = 3y2

x2 = y2
√
x2 =

√
y2

|x| = |y|

From Triangle inequality, we obtain

|x+ y| ≤ |x|+ |y| = |x|+ |x| = 2|x|
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3. (10 marks) Define the set

A =

{
6 +

7

n2
: n ∈ N

}
.

Find supA and infA with proving them.
Claim that infA = 6 and supA = 13

Proof. infA = 6
Let n ∈ N. Then n > 0. So, 7

n2 > 0. It’s clear that

6 ≤ 6 +
7

n2
.

Thus, 6 is a lower bound of A.
Suppose that there is a lower bound ℓ0 of A such that ℓ0 > 6. It follows that

ℓ0 ≤ 6 +
7

n2
for all n ∈ N. (∗)

From ℓ0 − 6

7
> 0, by Archimendean property, there is an n0 ∈ N such that

1

n0
<

ℓ0 − 6

7
.

Since n0 ≥ 1, n2
0 ≥ n0. We obtain

7

n2
0

≤ 7

n0
< ℓ0 − 6.

So, 6 + 7

n2
0

< ℓ0. This is contradiction to (∗). Therefore, infA = 6.

supA = 13

Let n ∈ N. Then n ≥ 1. So, n2 ≥ 1. We obtain

1

n2
≤ 1

7

n2
≤ 7

6 +
7

n2
≤ 13

Thus, 13 is an upper bound of A.
Let u be an upper bound of A. Then

6 +
7

n2
≤ u for all n ∈ N.

Choose n = 1, we obtain
13 ≤ u

Therefore, supA = 13.
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4. (10 marks) Use Definition to prove that

lim
n→∞

2n2 + 4

6n2 + 7
=

1

3
.

Proof. Let ε > 0. By Archimedean property, there is an N ∈ N such that 1

N
<

ε

5
.

Let n ∈ N such that n ≥ N . We obtain 1

n
≤ 1

N
. Since 18n2 + 21 > 18n2, 1

18n2 + 21
<

1

18n2
.

From n2 ≥ n, we have 1

n2
<

1

n
. It follows that∣∣∣∣2n2 + 4

6n2 + 7
− 1

3

∣∣∣∣ = ∣∣∣∣3(2n2 + 4)− (6n2 + 7)

3(6n2 + 7)

∣∣∣∣ = ∣∣∣∣6n2 + 12− 6n2 − 7

18n2 + 21

∣∣∣∣
=

∣∣∣∣ 5

18n2 + 21

∣∣∣∣
=

5

18n2 + 21
≤ 5

18n2
≤ 5

n2
≤ 5

n
≤ 5

N
< ε.

Thus, lim
n→∞

2n2 + 4

6n2 + 7
=

1

3
.

5. (10 marks) Let {xn} and {yn} be sequences in real. Prove that

if xn and xn + yn coverges, then yn also converges.

Proof. Assume that xn → L and xn + yn → M as n → ∞.
We will to prove that yn → M − L as n → ∞.
Let ε > 0. There are N1, N2 ∈ N such that

n ≥ N1 implies |xn − L| < ε

2

and

n ≥ N2 implies |(xn + yn)−M | < ε

2

Let n ∈ N. Choose N = max{N1, N2}. For each n ≥ N , we obtain

|yn − (M − L)| = |((xn + yn)−M)− (xn − L)|
≤ |(xn + yn)−M |+ |xn − L|

<
ε

2
+

ε

2
= ε.

Thus, yn converges.
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6. (10 marks) Use definition to prove that{
1

n(n+ 1)

}
is a Caucy sequence.

Proof. Let ε > 0. By Arichimedean property, there is an N ∈ N such that 1

N
<

ε

2
.

Let n,m ∈ N such that n,m ≥ N . Then 1

n
≤ 1

N
and 1

m
≤ 1

N
.

From n2 > 0 and m2 > 0, we have

n(n+ 1) = n2 + n > n and m(m+ 1) = m2 +m > m.

So,

1

n(n+ 1)
<

1

n
and 1

m(m+ 1)
≤ 1

m
.

It follows that ∣∣∣∣ 1

n(n+ 1)
− 1

m(m+ 1)

∣∣∣∣ = ∣∣∣∣ 1

n(n+ 1)

∣∣∣∣+ ∣∣∣∣ 1

m(m+ 1)

∣∣∣∣
=

1

n(n+ 1)
+

1

m(m+ 1)

≤ 1

n
+

1

m

≤ 1

N
+

1

N

<
ε

2
+

ε

2
= ε.

Thus,
{

1

n(n+ 1)

}
is Cauchy.

7. (10 marks) Let A and B be non-empty subset of R.
Assume that A is open and B is closed.

Determine whether A−B is open. Verify your answer.

Answer : A−B is open.

Proof. Assume that A is open and B is closed. Then Bc is open.
By theorem, it implies that A ∩Bc is open. Therefore,

A−B = A ∩Bc is open.
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8. (10 marks) Use definition to prove that

lim
x→1

1

x2 + 1
=

1

2
.

Proof. Let ε > 0. Choose δ = min
{
1

2
, ε

}
. Suppose that 0 < |x− 1| < δ.

Then 0 < |x− 1| < 1
2 . We have

−1

2
< x− 1 <

1

2
1

2
< x <

3

2
1

4
< x2 <

9

4
5

4
< x2 + 1 <

13

4

It follows that
3

2
< x+ 1 <

5

2
and 5

2
< 2(x2 + 1) <

13

2

So, |x+ 1| < 5

2
and 1

2(x2 + 1)
<

2

5
Then,

∣∣∣∣ 1

x2 + 1
− 1

2

∣∣∣∣ = ∣∣∣∣2− (x2 + 1)

2(x2 + 1)

∣∣∣∣ = ∣∣∣∣ 1− x2

2(x2 + 1)

∣∣∣∣
=

|x2 − 1|
2(x2 + 1)

=
|(x− 1)(x+ 1)|

2(x2 + 1)

= |x− 1| · |x+ 1| · 1

2(x2 + 1)

< δ · 5
2
· 2
5
= δ < ε.

Therefore, lim
x→1

1

x2 + 1
=

1

2
.
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9. (10 marks) Use definition prove that

lim
x→1+

x

1− x2
= −∞.

Proof. Let M < 0. Choose δ = min
{
1,− 1

3M

}
. Then 0 < δ ≤ 1 and 0 < δ ≤ − 1

3M
.

It is equivalent to
− 1

3δ
≤ M.

Let x ∈ R such that 0 < x− 1 < δ. Then 0 < x− 1 < 1 or 1 < x < 2. So, 2 < x+ 1 < 3. We obatin

1

x− 1
>

1

δ
and 1

x+ 1
>

1

3

It is clear that x− 1 > 0 and x+ 1 > 0. Then

x > 1

x · 1

x− 1
· 1

x+ 1
> 1 · 1

x− 1
· 1

x+ 1
>

1

δ
· 1
3

−x · 1

x− 1
· 1

x+ 1
< −1

δ
· 1
3

x

1− x2
< − 1

3δ
≤ M.

Thus, lim
x→1+

x

1− x2
= −∞.
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10. (10 marks) Let f and g be functions on R such that

g(x) > 1 for all x ∈ R

Let a be a limit point of R and f(x) ̸= 0 for all x ∈ R. Prove that if f(x) → 0 as x → a , then

lim
x→a

g(x)

|f(x)|
= +∞.

Proof. Assume that f and g are functions on R such that

g(x) > 1 for all x ∈ R

Let a be a limit point of R and f(x) ̸= 0 for all x ∈ R.
Suppose that f(x) → 0 as x → a.
Let M > 0. There is a δ > 0 such that

0 < |x− a| < δ implies |f(x)| < 1

M
.

Let x ∈ R such that 0 < |x− a| < δ. We obtain |f(x)| > 0 and 1

|f(x)|
> M . From g(x) ≥ 1,

it follows that

g(x)

|f(x)|
≥ 1

|f(x)|
> M.

Thus, g(x)

|f(x)|
→ +∞ as x → a.
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