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1. Use the Mean Value Theorem to prove that
arctanz < x for all z > 0.

2. Determine whether f is diferentiable at z = 0 if

2?sin(L)  ifx #0
flay =)
0 ifz=0
3. Define f:[-%,4] = R by
1
f(x) -z 4cosz

If f is 1-1 and continuous on [—3, 3]. Use the Inverse Function Theorem to find (f~!)’(1).

™

4. Use Change of Variable to show that / sin(z®) dz = 0.

—T

1
5. If f(x) :/ et dt, show that

2

“f@)

64
1 1’5

4
/ evdy = 16(6i —e).
1

6. Determine whether the series

(k+1) f+/<:\//<:+

converges or diverges. Find the values 1f it converges .

oo -1 n+1,.n+1
7. Show that Z”( ;nﬂl‘ _ <3i
X

n=1

1M

2
> where |z] < 3

x2n

8. Find the interval of convergence of Z 17)
(Inn

9. Suppose that f, — f and g, — g, as n — oo, uniformly on some set £ C R. Prove that

if f and g are bounded on FE, then f,g, — fg uniformly on F.

2 24q
10. Prove that the following limit exist and evaluate  lim dx.

n—oo Jq nx?’ + x

11. Let A C R and A’ be the set of all limit points of A. Prove that
Ais closed if and only if A=AUA".
12. Let {z,} be a sequence of real number. Prove that {z,} converges to z € R if and only if

for every neighborhood U of x there is N € N such that z,, € U for all n > N.
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1. Use the Mean Value Theorem to prove that
arctanz < x for all z > 0.
Proof. Let f(x) = arctanz —x  on [0,z] where > 0. Then f is continuous and differentiable on [0, z].

We obtain

! 1 z* <0 forallz>0
=———-1=- or all x .
1+ 22 1422 — -

f'(x)
By the Mean Value Theorem, there is a ¢ € [0, z] such that
f(@) = f(0) = f'(c)(z - 0)

2
arctanz —x = | — <0
1+¢c2

IA
o

Since >0 and - ,

1+ c2

arctanz <z forallz >0

2. Determine whether f is diferentiable at = = 0 if

NEs sin(1)  ifz#0
f(x)_{o if 2 =0

Solution. Consider the limit

.1
lim 7‘]0(:6) — 10) = lim 7x2 sm(g) = lim z sin <:11:>

z—0 x—0 z—0 xT rz—0

1
sin ()’ <1,
x
. 1
x sin ()} <z
x

It follows that lin% |z| = 0. By Squeeze Theorem,
T—

1
x sin ()‘ =0.
0 x

Since 0 <

0<

lim
Tr—r

1
So, lir% x sin () = 0. Therefore f is differentiable at x = 0 and
r— x

£1(0) — 1y @) = 10)

—r - * — lim xsin <1> =0.
x—0 x—0 x—0 xT



3. Define f: [—%,%] — R by

fla) = —

T+ cosx

If f is 1-1 and continuous on [—3, 3]. Use the Inverse Function Theorem to find (f~1)’(1).

Solution. Since

1
() = - =
1(0) 0+ cos0 ’
f71(1) = 0. Then
/ 1 :
= ——— 1 J—
Jz) (x + cosx)? (1= sinz)
/ 1 :
=——— - (1- =-1
F10) (0 + cos0)? (I =sin0)
By the Inverse Function Theorem,
_ 1 1 1
(fH'm= = =—=-1 #

s

4. Use Change of Variable to show that / sin(z®) dz = 0.

—T

/7r sin(z®) do = /0 sin(x?) da + /O7T sin(x?) da.

—T —T

Solution. Consider

Use Change of Variable u(xz) = —x to the term

Hence,
0 0
/ Sin(x3)d:r:/ sin((—u)3) (—du)
:/ sin(—u?) du
0
= —/ sinu® du
0
= —/ sinz? dzx
0
Therefore,

/ sin(z%) do = —/ sin(z%) dx + / sin(z%) dx = 0.
0 0

—Tr

1
5. If f(x) —/ et dt, show that

2

2 4

64 L?dm —/ evdy = 16(ei —e).
1 T 1

Solution. Apply Chain rule and the Fundamental of Calculus,

d ' 1
f’(x):dx/ et dt

2

d @
=— |- T dt
dx( /1 € >

1 1
= —e?22x = —2zxes?



Use Integration by part we have

64 x U=
1 [t 1 172
= — T —eax?
61 , e daz+[4e L
1 [* 2 1, 1
=5/, e da:+1(e4 —e)
Thus,
2 4
64 Lf)dx —/ evdy = 16(6i —e).
1 T 1
6. Determine whether the series -
kz k+1 f+ vk +1
converges or diverges. Find the values if it converges .
Solution. Consider
1 B 1
k+DOVEk+kvE+1 VEVE+IWVE+1+VEk)
B 1 VE+1-Vk
ViVEFTIWVE+T+VE) VE+1-VEk
3 VE+1-Vk
VEVET L(VE+ 17 — (VEP)
CVEFI-VE  VE+L WV
VEVEFT  VEVEFT VEVE+1
1 1
" VE VE+1
We have
Sp =
kzl (k:+1)f+l-m/k+
v (L )
— \Vk VEk+1
() () () ()
WV V2 V3 Vi ViVl
1
=1-
vn+1

1 1 1 /21 1
= ——f()+=f(1)+ = —(—2 72>d
1 1 1 /1 1 /%21
=_— adr + = sdr — = | = -e22d
6 46 :1c—|—4 16 X 2, 3 e T

Hence, the series converges and

= 1
= lim S, = lim (1-— =1
k§::1 k_|_]_ f_|_k‘/k_|_ n—o0 n—>oo< ,/n+1>




7. Show that

0 2
n(—1)"Hgnt! x
Z prn =332 where |z| < 3

n=1

Solution. Use geometric series (uniformly convergent)

1 o
] = g " where |z| < 1,
-z
n=0

wlg
i
=

—_

w t| -
Il
(]2
|
wl R
N~——~"

o - (_1) n
3+gc_Z 3 °

n=0
d 3 d X (—-1)"
dz3+a :dx;o( sn) &
3 = (=1
~GreE - nz::l ( 3n) o
(3?_)::;2 = —xQ;(_Bi)nnxnl
3 = (=)
_m — nz:l ( 3n) na 1
3 — (—1)"
e ; ( 3n) -1

(34 x)?

Therefore,

> n(—1)nHgntl T 2
Z g =352 where |z| < 3

<1
|z| <3
|x| <3
|x| <3
|z| <3
|z| <3
|z| <3

|x| <3

|x| <3



0 2n
8. Find the interval of convergence of Z LQ
o n(lnn)
Solution. Use the Ratio Test,
p2nt? n(lnn)?

I -
nsoo (n+1)(In(n + 1))2 x2n

= |2?| lim o tnn :
N n—soco \n+1/ \In(n+1)

1

Apply L’Hospital’s Rule to

Inx . z . ox+1
im ——— = lim - = lim
z—oo In(x +1)  2—00 4T TTU® T
. 1
= lim 14+ —-=1.
T—00 €T
. Inn
So, im ——— =1 and

n—oo In(n + 1)

. n
lim = lim =
n—oon + 1 n%oo1_|_ﬁ

Then

x2n+2 n(ln n)2
(n+1)(n(n+1))2 22

n—0o0

‘—|x2\-1-12—x2.

So, the series converges when |22| < 1. That is (—1,1) to be an interval of convergence.
In this case x = +1. Then

;:2 n(nn)2 ;:2 n(lnn)?’

Let f(z) =

where x > 2. We obtain

~ z(Inx)?
f(z) = —m : (lenx : % +1- (lnx)2>
:—m-(Zlnx-+(lnx)2)<O for all x > 2

So, f is decreasing. That is { to be decreasing. Then
n

)
/2  Hw)de = tim [

t=oo Jo z(Inx)?

17" 1
= lim [—] U= —
t—o0 Inz |, T

= lim {—1 + 1]
t—00 Int In2

_ 1

" In2

[e.e]
Hence, Z ———— converges. Therefore, [—1, 1] is the interval of convergent of the series.
“— n(lnn)?



10.

Suppose that f, — f and g, — g, as n — oo, uniformly on some set £ C R. Prove that

if f and g are bounded on F, then f,g, — fg uniformly on E.

Proof. Suppose that f, — f and g, — g, as n — oo, uniformly on F and f and g are bounded on FE.
There are M > 0 and L > 0 such that

|f(z)| <L and |g(x)|<M forallzeFE.

Let € > 0. Then there are Ny, No, N3 € N such that
n>Ni  — |fa(2) = f(2)] <1

n>Ny — |fn(x)_f(x)|<ﬁ
n>N; — |gn(x)—g(x)!<ﬁ

From |f,(z)| — |f(2)| < |fu(z) — f(x)| < 1, it follows that
[fa(@)] <1+ [f(z)| <1+ L.
Choose N = max{Nj, Na, N3}. For each n > N3 and = € E, we obtain
| fr(@)gn(z) — f(2)g(2)] = [ fr(®)(gn(z) — 9(2)) + g(x)(fu(x) — f(2))]
< | fa(@)llgn(z) — g(z)| + |9(@)]| fn(2) — f(2)]
€

IS

Thus, fngn — fg is uniformly on E.

2
dz.

2
x*+n
Prove that the following limit exist and evaluate  lim 3+
n—oo [1 nr’ +x

2
. e +n

Solution. Let f,(z) = e S where z € [1,2]. 1
Let € > 0. By Archimedean Principle, there is an N € N such that N < %
Since 1 <2 <2,1<2*<16and 1 <25 < 32. That is

0<at-1<15 and — < <1

= = 32 = 25 =

1 1
For n > N and x € [1,2], we have — < — and

n_ N

ful(2) 1 22 +n 1 -z zt—1
xTr) — — = —_— —_—— = =
" a3 nzd+x  ad z3(nad + x) z3(nx? + 1)
15 51515 1
~3(na?+1) ~ 23(na?)  2n n ad
< 15 < 15 <
—< =<
- n N
1
So, fn(x) — — converges uniformly on [1,2]. Therefore,
x
2 .2 2 2
lim [ 2T dx:/ lim =g
n=oo J; nad +x 1 n—oonxd +

2
1
:/Bd:z
1



11. Let A C R and A’ be the set of all limit points of A. Prove that
Ais closed if and only if A=AUA

Proof. Suppose that A is closed. Obviously, A C AU A’. It remain to show that AU A’ C A.
Let v€ AUA.

Case x € A. It’s done.

Case x € A’. Suppose that x ¢ A. Then x € A°. Since A€ is open, there is a § > 0 such that

(x —d,x +0) C A
So, (x — 6,z + )N A= @. It follows that
(x—=dz+0)NA—{z} =2 sincez ¢ A.

Hence, x is not a limit point of A. It contradicts.
Conversely, assume that A = AU A’. Let x € A°. Then x ¢ A. We obtain

x¢ AUA  ie,x ¢ Aand x ¢ A

So, there is § > 0 such that
(x—=d,z+0)NA—-{z} =2.

Then, (z — 0,2 + §) N A = &. Hence,
(x —d,x +0) C A

Therefore, A€ is open.
12. Let {z,} be a sequence of real number. Prove that {z,} converges to z € R if and only if
for every neighborhood U of x there is N € N such that z,, € U for all n > N.

Proof. Assume that z,, — x. Let U be a neighborhood of x. Then there is a § > 0 such that
(x—3d,z+0) CU.
There is an N € N and n > N, it implies that

|zp — x| <6
< Ty —x <0
r—0<zxTp,<xT+06

Thus, z, € (x —d§,x+6) C U for all n > N.
Conversely, assume that every neighborhood U of = there is N € N such that x, € U for all n > N.
Let ¢ > 0. Then U := (z — ¢, + ¢) is a neighborhood of = (it is clear). By assumption,

there is N € N such that z,, € U for all n > N
So, T, € (x — e,z +¢), ie.,

r—e<zp<xT+eE
— < Ty, —x<E

|z, — x| <&

Hence, z,, — x.



