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Some Definition to prove this examination.

1.

10.

f is continuous at a — Ve>030>0, |[zr—a|<d— |f(z)— fla) <e
f is uniformly continuous on E = Ve>030>0Vz,a€E, |[z—a|<d—|f(z)— fla)| <e
f is differentiable at a <= lim M exists
z—a Tr—a
f is increasing on E — Vzj,20 € E, z1 <xz2 — f(x1) < f(22)
f is decreasing on F = Vr,a2 €E, 1 <y — f(x1) > f(22)
f is integrable on [a, ] <— Ve>03P, U(f,P)—L(f,P)<e¢
b
Upper integral (U)/ f(z)dz = inf{U(f, P) : P is a partition of [a, b]}
b
Lower integral (L)/ f(z) dx = sup{L(f, P) : P is a partition of [a,b]}

> f(t)) Az — I(f)
=1

m
D ax

k=n

Riemann sum converges to I(f) <~ Ve>03P. C{xg,x1,..., T} — <eg

o0
Cauchy Criterion: Z aj, converges <= Ve>0INeNm>n>N — <e

k=1

= Ve>0INeNm>n>N-— ) |ax|<e

k=n
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1. (10 marks) Use definition to prove that
flz)=(z—-1)(z+1)+24

is continuous at x = —1.
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2. (10 marks) Let f:][0,1] — R be uniformly continuous on [0, 1]. Define
g(x) =af(x) where z €[0,1].

Prove that ¢ is uniformly continuous on [0, 1].
Hint : Use Extreme Value Theorem (EVT), i.e., if f is continous on E, then 3M > 0 such that

|f(x)| <M forall ze€FE.
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that

Inz <z forall z>1.
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4. (10 marks) Define f(x) =z +Inz where z € RT.

4.1 (5 marks) Show that f is injective (one-to-one) on z € RT.

4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~!
differentiable on R*.

4.3 (3 marks) Compute (f~1)/(1).
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5. (10 marks) Define

fz) =

2 ifze(0,1)
1 ifzell,?2).

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].
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6. (10 marks) Let f(z) = (x — 1)(x + 1) + 24 where z € [0, 2] and

2j 2 4 6
P:{j:jzo,l,...,n}:{o,,,,...,2}
n n nn

be a partition of [0,2]. Find the Riemann sum of f and find I(f) on [0, 2].
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7. (10 marks) Let g be differentiable and integrable on R. Define

2

f(z) = /106 2Vt - g(t?)dt where x € R.

0 1
Show that / f(z)dx + / g(x)dx = 0.
-1 0

0
Hint: Use integration by part to / f(z) dx and change variable.
-1
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8. (10 marks) Find a € R satisfying

) P S
— ak (k+1Da k| 132

Hint: Use Telescoping and Geometric Series.
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9. (10 marks) Let a € R. Determine whether

[e.o]

k
Z (a + (—l)k) converges or NOT.
k=1

Verify your answer.
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10. (10 marks) Prove that

is conditionally convergent.
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Math SSRU

Solution Final Exam. 2/2023
MAC3309 Mathematical Analysis

Created by Assistant Professor Thanatyod Jampawai, Ph.D.

1. (10 marks) Use definition to prove that
f@)y=(z—-1)(x+1)+24
is continuous at x = —1.

Proof. Let € > 0. Choose § = min{1, §}.
Let z € R such that |z + 1| < 6. Then |z + 1] < 1.

So, |z| — |1| < |xr + 1| < 1. We obtain |z| < 2.
By triangle inequility, it follows that

[f(z) = F(=1)] = [(z = 1)(z + 1) + 24 — 24|
= |z — 1|z + 1|
< (lz| +1)d
< (241)
€

Therefore, f is continuous at x = —1. O
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2. (10 marks) Let f:][0,1] — R be uniformly continuous on [0, 1]. Define
g(x) =af(x) where z €[0,1].

Prove that ¢ is uniformly continuous on [0, 1].
Hint : Use Extreme Value Theorem (EVT), i.e., if f is continous on E, then 3M > 0 such that

|f(x)| <M forall ze€FE.

Proof. Assume that f be uniformly continuous on [0, 1].
Let € > 0. There is an dg > 0 such that

z —a| < 8 for all z,a € [0,1] implies | f(z) — f(a)] < .

2
Since f is continuous on [0, 1], by EVT, there is an M > 0 such that
|f(z)| < M for all x € [0,1].
€
= mi — . — . < <M.
Choose § = min {50, S0+ 1)} Let z,a € [0,1] such that |z —a| < d. Then |z| <1 and |f(a)] < M
Apply the triangle inequality, we have
l9(z) — g(a)| = |zf(z) — af(a)]
= |zf(x) —af(a) + 2f(a) — zf(a)l
= [z[f(x) = f(a)] + f(a)[z — d]
< ol - [f(z) = fla)| + | f(a)] - [z — al
€ €
1-—+ M-
R Tg V)
<< + Si=c
2 2 7
Thus, ¢ is uniformly continuous on [0, 1]. O
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3. (10 marks) Use the Mean Value Theorem (MVT) to prove that
Inz <z forall z>1.
Proof. Let a > 1 and define
f(z) =+ —Inz where x € [1,q].

Then f is continuous on [1,a] and differentiable on (1,a). It follows that

1@ =5=7

By the Mean Value Theorem, there is a ¢ € (1,a) such that

2y/c ¢
Va—1 ! 1( 1)+1
a—lna={(—5-—-)(a—
2\/c ¢
From 1 < ¢ < a, it leads to 1 < /¢ < y/a and
1 1 1
S < S <1l = -1 < =2 < =5
a c c a
1 1 1

2 < 2 2 < <
Ve < Wa — o < 5x 2

1 1 1 1
We have | —= — - | < |——=+ = ). Sincea>1,a—1>0and a(a — 1) > 0 and
2y/c ¢ a 2
1 1 1 1
) a-D)>(—+-) -1
(2e2) -0 (5 +3) -
1 1 1 1
Y- 1> () a—1)+1
(2\@ C)(a )+ ><a—|—2>(a ) +
1 a 1
S I I |
+a+2 2+
a1
a2 2
_2+a2—a
N 2a
-1
:a(a )+2>0
2a
Thus,
Ja—1 L DNeu-ni1so
— In — - —_
a a N a
We conclude that Inz < /z forall x> 1. O
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4. (10 marks) Define f(x) =z +Inz where z € RT.
4.1 (5 marks) Show that f is injective (one-to-one) on x € R*.
Proof. Let z,y € RT and z # y. WLOG z >y > 0. We obtain
Inz > Iny.

It follows that

c4+Ilnzr>y+Iny
f(x) > f(y)

So, f(z) # f(y). Therefore, f is injective on RT. O

4.2 (2 marks) Use the result from 4.1 and the Inverse Function Theorem (IFT) to explain that f~!
differentiable on R™.

Solution. Since f is injective, f~! exists. It is clear that f is continous on RT. By IFT, we
conclude that f~! differentiable on R*.

4.3 (3 marks) Compute (f~1)'(1).
1
Solution. We see that f'(x) =1+ — and
x
fA)=1+Inl=1+0=1

So f~(1) = 1. By IFT,
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5. (10 marks) Define

fz) =

2 ifze(0,1)
1 ifzell,?2).

Draw the graph of f on [0, 2] and use definition to show that f is integrable on [0, 2].

Proof. Let € > 0.
Case ¢ < 1. Choose P = {0, 1-— g, 1,1+ 2,2}.

Y

2 <

We obtain
ot =2(1-5)+2(5) 1 (5) +1 1)
L =2(1-3)+1(5) +1(3) +1(1-3)
€

U(f,P)—L(f,P) = 3 <e.

Case € > 1. Choose P = {0,1,2}. Then

U(f,P)=2(1-0)+1(2-1)
L(f,P)=1(1-0)+1(2—1)
U(f,P)—L(f,P)=1<e.

Thus, f is integrable on [0, 2]. O
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6. (10 marks) Let f(z) = (x — 1)(x + 1) + 24 where z € [0, 2] and

2j 2 4 6
P:{j:jzo,l,...,n}:{o,,,,...,2}
n n nn

be a partition of [0,2]. Find the Riemann sum of f and find I(f) on [0, 2].
Solution. Choose The Right End Point , i.e., f(t;) = f(2) on the subinterval [z;_1,z;]
and

j 2
Azj=" - =2 == forall j=1,23,...n

From f(z) = (v — 1)(z + 1) + 24 = 22 — 1 4+ 24 = 22 + 23. We obtain

S s -5 (3) 115 [(3) =

2|14 &,
| J=l
214
_2 7‘n(n—|—1)(2n—|—1)+23n
n | n? 6
4
_ (n+1)(2n+1)+46
3n?
Thus,
Aln+1)(2n +1) 8 146
I(f)= 1 (tj)Az; = lin 46 = 446 = ——
() ||Plulgozf e A 3n2 ta=gt 3 7

Division of Mathematics Faculty of Education Suan Sunandh Rajabhat University page | 18



. MAC3309 Math Analysis 110 Y SEC.....ooovoooeoe.

7. (10 marks) Let g be differentiable and integrable on R. Define

flx) = /106 2Vt - g(t?)dt where z € R.

Show that /01 f(z)dx + /01 g(x)dx = 0.
Hint: Use integration by part to / ’ f(z) dx and change variable.
Solution. By the First Fundament;l Theorem of Calculus and Chain rule,
(@) = 2Va? - g((2*)?) - 22 = 2| - g(a*) - 20 = 4afa| - g(a*).

We have

f(=1) = /1 2Vt - g(t?) dt = 0

1

By integration by part, we obtain

/_01 f(z)dx = /_01 o' f(x)de = [zf(x)]% — /0 2f'(z) dz

-1

0
= / 9(¢(2))¢' (x) d Change of Variable ¢(z) = z*
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8. (10 marks) Find a € R satisfying

1 1 1 1
>l Te TR T
—a (k+1)a k 132
Hint: Use Telescoping and Geometric Series.

Solution. We consider

L A St NS U SRR SO S A SR B
ak (k+Da k| aF (k+1)a*b*t! * ka*b  aF kak (k4 1)ak+l )~

So, the above sequence consist of a geometric and telescoping sequences. It follows that
1 1 1 1 =~ [1 1 1
Il e 4T = il [t S
132 Z ak { (k+1)a * k] kz_l [ak * (kak (k+ 1)a’“+1>}

k=1
S I 1
z;ak ;(k:ak k—i—l)a’““)

% Ly ! if |a| > 1
— 11m 1I |a
a k—o00 k + 1)ak+1

B AN 2a —1
B a ala—1)
We obtain a(a — 1) = 132(2a — 1) or a® — 265a + 132 = 0 . Then,
265 + /2652 — 4(1)(132)

265 — /2652 — 4(1)(132)

a 201) < an a 201) >
265-++/2652—4(1)(132
Thus, a = i 501 (1)(152) #
EDIT: Find a € R satisfying
S Lf, L 1]_ L
£ a* (k+1a k| 132

Hint: Use Telescoping and Geometric Series.

Solution. We consider

N P N N SR S SN S SR S
ak (k+1a k| a*  (k+1)artt  kak ok ka*  (k+1)ak+1 )~

So, the above sequence consist of a geometric and telescoping sequences. It follows that

R N U PR S | _i oo 1
132_k:1 ak (k+1)a k _kfl ak kak  (k+ 1)akt1
1 /1 1
:ZT Z( kT k+1>
c—~at = \ka (k+1)a
1
=2 if |[a] > 1

1 1
1— % a k—>oo (k + l)ak+1>

()<>

We obtain 132 = a(a — 1) or (a — 12)(a+ 11) = a? —a — 132 = 0. Thus, a = 12, —11 #
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9. (10 marks) Let a € R. Determine whether

> k
Z (a + (—1)k) converges or NOT.
k=1

Verify your answer.

Solution. Claim that the series diverges.

o
k
Proof. Assume that Z (a + (—l)k) converges. By the Root Test, r < 1 if

k=1
1
k k|&
r = lim sup (a +(—1) )
k—o0
= limsup |a + (—1)]“’
k—o0

= lim sup{|a — 1|, |a + 1|}
n—oo
— sup{Ja — 1], la + 1]}
If @ = 0, then r = sup{1} = 1. This contradicts r < 1.

Suppose that a # 0.
Case r = |a — 1] < 1. Then

la + 1| < sup{la — 1],|a+ 1|} = |a — 1] (%)

‘We obatian
-1 < a—-1 < 1

0 < a < 2
1 < a+1 < 3

So, [a+ 1| > 1. We get |[a+ 1| > 1 > |a — 1|. It contradicts (x).
Case 7 = |a+ 1| < 1. Then
la — 1| < sup{la —1]|,|a+ 1|} = |a + 1] (xx)

We obatian
-1 < a+1 < 1

-2 < a < 0
-3 < a-1 < -1

So, |a — 1| > 1. We get |[a — 1| > 1 > |a + 1|. It contradicts (xx).
o0

k
Therefore, Z (a + (—1)’“) diverges. O
k=1
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10. (10 marks) Prove that

is conditionally convergent.

Solution. Firstly, we see that

1 k(1+ ¢ 1+
i £HL gy AR IR g,
k—o0 k‘2—|—1 k—o0 k2(1+k—2) k—oo k 1—|—k—2
r+1 S .
Next, let f(z) = — 1 where x > 1. The derivative of f(x) is
x

(22 +1)-1—(z+1) 22

!/
2 4+1-222 - 22
T (@212
1-2r—2% 2—(1+422+2?)
T @12 (@212
2= (z+1)?

_W<O for all z > 1.

k+1
So, {/{:2—:—1} is decreasing. By Alternating Series Test (AST),

- k+1
Z(—l)k (k;—_i— 1> converges.

k=1
i k+1
k2+1

()%

Finally, we consider

>

=1
and
ket 1
Jim <’“211> g FEED o (BAEY
k—o0 % _k—>oo k2+1 _k—><x> k2+1 o

o0
1
Since Z z diverges (p = 1), by the Limit Comparision Test, it implies that
k=1

i E diverges
k241 &S

k=1

Therefore, we conclude that

o0
k+1
Z(—l)k (l;—ﬂ) is conditionally convergent.
k=1
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